

SOUTH EASTERN KENYA UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE IN (CHEMISTRY)_AND_BACHELOR OF EDUCATION (SCIENCE)

SCH 203: THERMODYNAMICS 1 AND THERMOCHEMISTRY

8 ${ }^{\text {TH }}$ DECEMBER, 2016
TIME: 8.00-10.00 A.M

INSTRUCTIONS TO CANDIDATES

(a) Answer question One and any other Two questions
(b) Question 1 carries 30 marks while the other questions carry 20 marks each
(c) Illustrate your answers with well label diagrams where applicable

Constants
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ or $0.08314 \mathrm{Lbarmol}^{-1} \mathrm{k}^{-1}, 0.0821 \mathrm{LatmK}^{-1} \mathrm{~mol}^{-1}$

Question 1 (30 marks)
a). Define the terms:
i) isochoric process

4 marks
ii) isobaric process
b). Distinguish between reversible and irreversible work.

4 marks
c). Give an example of :
i) an adiabatic change
ii) Isochoric change
2 marks
d). Compare work of expansion of an ideal gas and van dar waals gas
5 marks
e). Show that $C_{p, m}=C_{v, m}+R$.
5 marks
f). Calculate $\mathrm{w}, \mathrm{q}, \Delta \mathrm{u}$ and $\Delta \mathrm{H}$ for reversible isothermal compression of 0.5 mole of an ideal gas from 2.0 L to 1.0 L at 298 K . marks
$\mathrm{g})$. The enthalpy of vapourization $\left(\Delta \mathrm{H}_{\mathrm{v}}{ }^{\theta}\right)$ of a certain liquid is $32.0 \mathrm{~kJ} / \mathrm{mol}$. Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{H}$ and Δu when 0.5 mol is vapourised at 260 K and pressure of 65 bar . marks

Question 2 (20 marks)

a) 0 . 1 mole of gas undergoes an irreversible expansion along the path shown below. q, w and $\Delta \mathrm{u}$.

Calculate:

i) $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$ and T 4	8 marks
ii) $\mathrm{w}_{\text {step } 1}, \mathrm{w}_{\text {step } 2}$ and $\mathrm{w}_{\text {step }}$	6 marks
iii) $\mathrm{q}_{\text {step } 1}, \mathrm{q}_{\text {step } 2}$ and $\mathrm{q}_{\text {step }}$	6 marks

Question 3 (20 marks)

a) The combustion of benzene is given by the following equation.
$\mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~L})}+15 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \quad \Delta \mathrm{H}_{\mathrm{c}}{ }^{\theta}=-3267.4 \mathrm{Kj} / \mathrm{mol}$
Given that:
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\theta} \mathrm{CO}_{2(\mathrm{~g})}=-393.3 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\theta} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{v}}{ }^{\theta} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}=-241.8 \mathrm{~kJ} / \mathrm{mol}$
b) Calculate the:
i) heat of formation of benzene.

5 marks
ii) Standard enthalpy of reaction $\left(\Delta \mathrm{H}_{\mathrm{r}}{ }^{\theta}\right)$ of ;
$12 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} 0{ }_{(\mathrm{L})} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~L})}+15 \mathrm{O}_{2(\mathrm{~g})}$
2 marks
iii) $\Delta \mathrm{H}_{\mathrm{r}}{ }^{\theta}$ for the reaction below if $\Delta \mathrm{H}_{\mathrm{v}}{ }^{\theta}$ for benzene at $25{ }^{\circ} \mathrm{C}$ is $+33.6 \mathrm{Kj} / \mathrm{mol}$ marks

$$
\mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}+15 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

b) Compare isothermal expansion and adiabatic expansion.

Question 4 (20 marks)

a).Calculate the final temperature of one mole of a gas at 200.0 atm and $19.0^{\circ} \mathrm{C}$ as it is forced through a porous plug to final pressure of 0.95 atm . The joule-Thomson coefficient of the gas is $0.0150 \mathrm{~K} / \mathrm{atm}$
b). The dependence of the molar constant pressure heat capacity of a real gas can be represented by the function

$$
\mathrm{C}_{\mathrm{p}, \mathrm{~m}}=\alpha+\beta \mathrm{t}+\gamma \mathrm{T}^{2}
$$

For nitrogen gas the constants $\alpha=26.984 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}, \beta=5.91 \times 10^{-3} \mathrm{Jmol}^{-1} \mathrm{~K}^{-2}$ and $\gamma=-3.377 \times 10^{-7} \mathrm{~J} \mathrm{~mol}^{-}$ ${ }^{1} \mathrm{~K}^{-3}$. Determine the amount of heat required to raise the temperature of one mole of nitrogen gas from 300 K to 1000 k at constant pressure.

8 marks

c). The internal energy (u) of one mole of monoatomic perfect gas is $3 / 2 R T$. Calculate ΔH of the gas when the temperature of the gas rises from 300 K to 400 K .

Question 5 (20 marks)

a) Assuming that CO_{2} is a perfect gas. Calculate $\Delta \mathrm{H}^{\theta} \quad, \mathrm{w}$ and Δu for one mole of the gas undergoing a reversible process.

10 marks
$\mathrm{CO}_{2(\mathrm{~g})}\left(298 \mathrm{~K}, \mathrm{I}\right.$ bar) $\rightarrow \mathrm{CO}_{2(\mathrm{~g})}$ ($1000 \mathrm{~K}, 1 \mathrm{bar}$)
Take $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=26.648+42.262 \times 10^{-3} \mathrm{~T}-142.4 \times 10^{-7} \mathrm{~T}^{2}$ (units are $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
b) i) The reaction below represents the decomposition of hydrogen peroxide and the corresponding bond energies.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~L})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Bond	Bond energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{O}=\mathrm{O}$	498
$\mathrm{O}-\mathrm{O}$	146

Calculate the energy change for the reaction and state whether the reaction is exothermic or endothermic.
ii) Using the following data below calculate the bond energy of $\mathrm{C}=\mathrm{O}$ if the heat of combustion of propene is $-1752 \mathrm{~kJ} / \mathrm{mol}$.

Bond	Bond energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}=\mathrm{C}$	612
C-C	348
O=O	496
O-H	463
C-H	412

