

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF

SCIENCE (PHYSICS)

SPH 306: MATHEMATICAL PHYSICS II

DATE: 16TH DECEMBER, 2016

TIME: 4.00-6.00 P.M

INSTRUCTIONS

- 1. This paper consists of FIVE QUESTIONS
- 2. Answer **QUESTION ONE** and **ANY OTHER TWO QUESTIONS**
- **3.** Question ONE carries 30 marks while the other questions carry 20 marks each
- **4.** All the symbols have their usual meaning
- **5.** Tables are attached containing various relations which may be useful where necessary

QUESTION ONE (Compulsory) (30 marks)

(a) Find the Fourier series for

$$f(x) = 1,$$
 $-2 < x < 2$ (7 marks)

(b) Briefly explain the terms symmetry operation and symmetry elements (5 marks)

(c)

One of the equations arising from Helmholtz equation $\nabla^2 \psi + k^2 \psi = 0$ in cylindrical system is

$$\frac{d^2 Z}{dz^2} - \lambda_1 Z = 0, \qquad (\lambda_1 = \text{constant}) \qquad (7 \text{ marks})$$

Given that
$$\psi(r,\theta,z)$$
 vanishes at $z=0$ and $z=L$. Show that $\lambda_1 = -\frac{n^2 \pi^2}{L^2}$

(d) Compute the Laplace transform of

$$f(t) = \begin{cases} 0, & 0 < t < a \\ 1, & a < t < b \\ 0, & b < t \end{cases}$$
(3 marks)

(e) Find the Fourier cosine and sine integrals for

$$f(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & 1 < x \end{cases}$$
 (8 marks)

QUESTION TWO (20 marks)

(a) By the use of Laplace transform solve the initial value problem

$$u'' + 4u' + 3u = 0,$$
 $u(0) = 1, u'(0) = 0$ (9 marks)

(b) Show that the Fourier sine transform of e^{-at} is $g_s(\omega) = \sqrt{\frac{2}{\pi}} \frac{\omega}{\omega^2 + a^2}$ (11 marks)

QUESTION THREE (20 marks)

(a) Given a boundary value problem $\nabla^2 u = 0$, with the Laplacian operator in the spherical coordinate system as

$$\nabla^2 u = \frac{1}{\rho} \left\{ \frac{\partial}{\partial \rho} \left(\rho^2 \frac{du}{d\rho} \right) + \frac{1}{\sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial u}{\partial \phi} \right) + \frac{1}{\sin^2 \phi} \frac{\partial^2 u}{\partial \theta^2} \right\}$$

and $\rho = \sqrt{x^2 + y^2 + z^2}$.

The variables are restricted by $0 \le \rho$, $0 \le \theta < 2\pi$, $0 \le \phi \le \pi$

Derive the Legendre differential equation

(11 marks)

$$(1-x^{2})\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} + \mu^{2}y = 0, \qquad -1 < x < 1$$

where $x = \cos \phi$, $\Phi(\phi) = y(x)$, μ^2 is a constant

(b) In group theory,

(i) Define a group	(5 marks)
(ii) Show whether or not the following set form a group	
[1,0,-1] under arithmetic addition	(4 marks)

QUESTION FOUR (20 marks)

Consider a quantity $J = \int_{x_1}^{x_2} f(y, y_x, x) dx$ that takes on an extreme value.

 $f(y, y_x, x)$ is a known function, $y \equiv y(x), y_x \equiv \frac{dy}{dx}$.

(a) Derive the Euler equation
$$\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y_x} = 0$$
 (12 marks)

(b) Given the integrand
$$f(y, y_x, x)$$
 to be of the form
 $f(y, y_x, x) = f_1(x, y) + y_x f_2(x, y)$ (8 marks)
Show that the Euler equation leads to $\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial x} = 0$

QUESTION FIVE (20 marks)

Solve the initial value boundary value problem

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t} \qquad \qquad 0 < x < a, \ 0 < t$$
$$\frac{\partial u(0,t)}{\partial x} = 0, \quad u(a,t) = T_0, \qquad \qquad 0 < t$$
$$u(x,0) = T_1 \qquad \qquad 0 < x < a$$

SEKU/09-12/2016/2017

Page 3

(20 marks)