

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF

BACHELOR SCIENCE IN ELECTRONICS

ELC 404: INTEGRATED CIRCUIT DESIGN

^{7TH} DECEMBER, 2016

TIME:10.30-12.30 P.M

INSTRUCTIONS TO CANDIDATES

- This paper consists of FIVE questions.
- Answer question ONE and any other TWO questions.
- Question ONE carries 30 mark while the other TWO questions carry 20 marks each

QUESTION 1, 30 MARKS [COMPULSORY]

a)	What is an Integrated circuit[2 marks]		
b)	Differentiate between direct and indirect band gap [4 marks]		
c)	State two reasons why GaAS is used in many applications such as microwaves and ICs		
		[2 marks]	
d)) What is a charged coupled device (CCD) [2 mark]		
e)	A particular layer of MOS circuit has resistivity of 10 Ohms-cm. the section is 55 μ m long,		
	5 μm wide and 1 μm thick. Calculate		
	i. Sheet resistance	[3 marks]	
	ii. Resistance of the layer	[2 marks]	
f)	State tree advantages of using static CMOS [3 marks]		
g)	Compare IC based on MOS and bipolar transistor technologies [3 marks]		
h)	Draw the circuitry representation of I ² L inverter [2 marks]		

i)	Describe three general functions of computer register	[3 marks]
j)	Draw a CMOS schematic diagram implementation of D-latch	[4 marks]

QUESTION 2 [20 MARKS]

a) Explain the functions of the following registers

i. Memory address register		[2 marks]
ii.	Program counter	[2 marks]
iii.	Accumulator register	[2 marks]
iv.	Memory data register	[2 marks]
Descr	ibe the two types of charged coupled devices	[8 marks]
Draw the logic operations- NAND gate and its truth table [4 marks]		

QUESTION 3, [20 MARKS]

b)

c)

a) State two main factors considered during design of any basic circuit	[2 marks]
---	------------

- b) State two models used by IC designers to shrink the size of a circuit [2 marks]
- c) Define the following terminologies used in ICs designs

Epitaxy	[1 mark]
Wafer	[1 mark]
Metallization	[1 mark]
Bonding	[1 mark]
	Epitaxy Wafer Metallization Bonding

 d) Using a physical structure of p-Si substrate with a thin film layer of SiO₂ describe the process of photolithography [12 marks]

QUESTION 4, [20 MARKS]

a)	State three advantages of using dynamic CMOS	[3 marks]
b)	Draw a CMOS inverter circuit and its transfer characteristics	[5 marks]
c)	State and explain three circuit elements used in CMOS and radio freque	ency design
		[6 marks]
d)	Draw the physical structure of BiMOS npn transistor	[6 marks]

QUESTION 5, [20 MARKS]

a) The figure 1 below shows a DTL circuit model with high inputs. Use it to attempts questions that follow. Given that $\beta = 40$, in the diagram 5K=5k Ω and 2.2K=2.2k Ω , +5=+5V, 0.7=0.7V, 0.2=0.2V and 0.8=0.8V

Given that all the outputs are high and all the system is saturated. Find

i.	The voltage at point P	[2 marks]
ii.	The current I ₁	[1 marks]
iii.	The current I ₂	[1 marks]
iv.	The current I _B	[2 marks]
v.	Calculate the maximum collector current	

v. Calculate the maximum collector current when the transistor is saturated [2 marks]

vi.	The current I_3	[2 marks]

- vii. The maximum load current, V_{in} and I_{in} [3 marks]
 - b) Using inverters, and gates and OR gates implement a 5 X 8 X 4 (V*P*Z)
 programmable logic array with following outcomes [7 marks]

$$z_{1} = a\overline{b}\overline{d}e + \overline{a}\overline{b}\overline{c}\overline{d}\overline{e} + bc + de$$
$$z_{2} = \overline{a}\overline{c}e$$
$$z_{3} = bc + de + \overline{c}\overline{d}\overline{e} + bd$$
$$z_{4} = \overline{a}\overline{c}e + ce$$