

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE IN ELECTRONICS

ELC 201: DIGITAL ELECTRONICS I

<u>13 TH DECEMBER, 2016</u>

TIME: 1.30-3.30 P.M

INSTRUCTIONS TO THE CANDIDATES

(a) This paper consists of five questions

(b) Answer question **ONE** and **ANY OTHER TWO** questions

Question One (30marks)

a) Convert the following

(i) 321.104_8 to decimal	(2 marks)
(ii) 97.3125_{10} to its binary equivalent	(2 marks)
b) Sketch a two-input OR Gate equivalent circuit given the nece	essary circuit components and;
(i) Two switches	(2 marks)
(ii) Three transistors	(3 marks)
c) Briefly explain the following number systems in terms of radi	ix and position value;
(i) The binary number system	(2 marks)
(ii) Decimal number system	(2 marks)
(iii) Octal number system	(2 marks)
d) Find the Boolean expression for the output Y and compute its	s value when
	1

	(4 marks)
e) Proof the following Boolean identities	
(i) $AC + ABC = AC$	(2 marks)
(ii) $(A+B)(A+\overline{B})$	(2 marks)
f) Sketch the following circuit	
(i) The basic NOR RTI circuit	(2 marks)
(ii) The basic DTL circuit	(1 marks)
g) Demorganize the following	
(i) $\overline{(A+B)(C+D)}$	(2 marks)
(ii) $(AB+C)(AB+D)$	(2 marks)

Question Two (20marks)

Use figure (3) above to answer questions (a) and (b)

a) From the figure

(i) Sketch the basic circuit for the TTL family and	(3 marks)
(ii) Explain its circuit operation	(4 marks)
b) The practical form of a TTL is shown infig (iii). Explain what happe	ens to the circuit when
(i) The input is high	(5 marks)
(ii) The input is low	(5 marks)
(iii) State three (3) advantages of the standard TTL family	(3 marks)
Question Three (20 marks)	
a) Convert the following in to their binary equivalent	
(i) 0.8796_{10}	(3 marks)
(ii) 5632 ₈	(3 marks)
(iii) $34F_{16}$	(4 marks)
b) Subtract 01101_2 from 11011_2 using;	
(i) 1's complement	(2 marks)
(ii) 2's complement	(2 marks)
c) Multiply 1111by 1110	(4 marks)
d) By use of low for 1 and high voltage for 0 sketch the following elec	trical signals
(i) 10110101011	(1 mark)
(ii) 11011010001	(1 marks)
Question Four (20 marks)	
a) Find the switching circuits for the following logic expressions	
(i) $A.(B+C)$	(2 marks)
(ii) $A\overline{B} + CD$	(2 marks)
$(\mathbf{iii})\left(\overline{A}B + AC\right)\overline{C}$	(2 marks)
b) Simplify the following Boolean expressions	
(i) $A\overline{B}C + AB\overline{C} - ABC$	(3marks)
(ii) $A[B + C(\overline{AB + AC})]$	(3 marks)
(iii) $A\overline{B}\overline{D} + ABC\overline{D} + AB\overline{C}\overline{D} + \overline{A}\overline{B}\overline{D} + \overline{A}BC\overline{D}$	(4 marks)
c) Use the truth table to verify the following identities	

(i) $\overline{A} + B = \overline{A}.B$	(2 marks)
(ii) $A(\overline{A}+B) = AB$	(2marks)
Question Five (20 marks)	
a) Given a two input NOR Gate	
(i) Sketch its symbol	(1 mark)
(ii) Sketch its equivalent relay circuit	(1 marks)
(iii) Write down its truth table	(1 mark)
(iv)Sketch and explain how the transistor NOR Gate operates	(4 marks)
b) NOR Gate is a universal Gate. Explain how it can be used as	
(i) OR gate	(2 marks)
(ii) AND gate	(2 marks)
(iii) NOT gate	(2 marks)
c) Explain using a sketch how the following operate	
(i) Parallel binary adder	(4 marks)
(ii) Half subtractor	(3 marks)