

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN PHYSICS

SPH 414: ELEMENTARY PARTICLE PHYSICS

8TH DECEMBER, 2016

TIME: 8.00-10.00 A.M

INSTRUCTIONS TO CANDIDATES

- This paper consists of FIVE questions.
- Answer questions **ONE** and any other **TWO** questions.
- Question ONE carries 30 mark while the other TWO questions carry 20 marks each
- Use the following constants where necessary

Proton mass $m_p = 938.3 MeV / c^2$

Electron mass $m_e = 0.511 MeV / c^2$

Electron mass $m_n = 939.6 MeV / c^2$

QUESTION ONE (COMPULSORY) (30 MARKS)

a) Explain how the elementary particles are classified in the standard model

(2 marks)

- b) Indicate with an explanation which interaction is involved in the following decay process and indicate whether they are allowed or forbidden.
 - (i). $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$. (2 marks)
 - (ii). $p \rightarrow n + e^+ + v_e$.(3 marks)
 - (iii). $e^+ + e^- \to \mu^+ + \mu^- .(2 \text{ marks})$
- c) Show that the relativistic energy-momentum relation is given as $E = \sqrt{(mc^2)^2 + (pc)^2}$.

(5 marks).

d)	Draw and explain the Feynman diagram of the reaction $e^+ + e^- \rightarrow \mu^+ + \mu^-$.	
		(4 marks)
e)	Differentiate between pseudoscalar and vector mesons. Give two examples	of each
		(4 marks)
f)	Explain how particles are detected in calorimeters.	(5 marks)
QUES	TION TWO (20 MARKS)	
•	Final-in formation limit the alternation methods into a still international for the	

a)	Explain forces involved in the elementary particle interactions. State the particle involved				
	in each case.	(6 marks)			
b)	Describe the classification and characteristics of leptons.	(6 marks)			
c)	A particle X decays at rest weakly as follows $X \to \pi^0 + \mu^+ + \nu_{\mu}$.	Determine the			
	following properties of X				
	(i). Charge.	(1 mark)			
	(ii). Baryon number.	(1 mark)			
	(iii). Lepton number.	(1 mark)			
	(iv). Spin.	(2 marks)			
(d). Use cabibbo theory to explain the difference in decay $D^+ \to \overline{K}^0 \mu^+ v_\mu$ and $D^+ \to \pi^0 \mu^+ v_\mu$					
, given that D^+ consists of c quark and \overline{d} anti-quark. (3 marks)					

QUESTION THREE (20 MARKS)

a) Briefly explain the following terms giving two examples of each:	
(i). Hadron	(2 marks)
(ii). Baryon	(2 marks)
(iii). Meson	(2 marks)
b) Pions can be used as a beam to study the structure of nucleons. W	rite the equations of
production and decay of Δ -multiplets particles.	(8 marks)
c) A closer investigation of the $J = \frac{3}{2}$ baryons shows an interesting	g problem when we
consider the symmetry under exchange of labels of the three quarks	in the uuu, ddd and
sss baryons. Using the concept of "color" charge explain how the	nis problems can be
resolved.	(6 marks)
QUESTION FOUR (20 MARKS)	
(a) What is a Feynman diagram?	(2 marks)

- (b) Explain the rules that must be followed in drawing a Feynman diagram. (6 marks)
- (c) Draw the lowest Feynman diagram of the electromagnetic vertex with particle and antiparticle in the final state. (2 marks)

(d) Consider scattering of an electron with four momentum vector p off a particle with four momentum vector P in the lab frame. Show that the energy E of the scattered electron is $E' = \frac{E}{1 + \frac{E}{Mc^2} \cdot (1 - \cos\theta)}$ where θ is the scattering angle and E is the initial energy of the (10 marks)

electron.

QUESTION FIVE (20 MARKS)

bribe the following types of accelerators	
Linear accelerator,	(5 marks)
Cyclotrons accelerator.	(5 marks)
ribe the working principle of the following detectors.	
Wire chambers,	(5 marks)
Scintillation counters.	(5 marks)
	ribe the following types of accelerators Linear accelerator, Cyclotrons accelerator. ribe the working principle of the following detectors. Wire chambers, Scintillation counters.