Name	Index Number
233/2 CHEMISTRY	Candidate's Signature
The state of the s	Date

2 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL.
Kenya Certificate of Secondary Education

CHEMISTRY

Paper 2 (THEORY)

2 hours

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 12 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	11	
2	12	Ţ
3	13	
4	11	
5	10	
6	12	
7	11	
Total Score	80	KC

1. Use the information in the table below to answer the questions that follow. The letters do not represent the actual symbols of the elements.

Element	Atomic number	Melting point °C
R	11	97.8
S	12	650.0
T	15	44.0
U	17	-102
V	18	1 -189
W	19	64.0

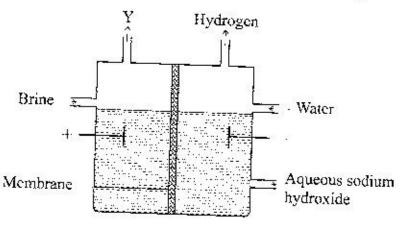
(a) Give a reason why the melting point of:

	(1)	S is higher than that of R.	(2 marks)

		<u></u>	
	(ii)	V is lower than that of U.	(2 marks)
		······································	
(b)	How	does the reactivity of W with chlorine compare with that of R with	chlorine?
			(2 marks)
(c)	Write	e an equation for the reaction between T and excess oxygen.	(1 mark)

	,,,,,,,		

	(a)	When 1,15 g of R was reacted with water 600 cm ³ of gas was produced. Determine the
		relative atomic mass of R. (Molar gas volume = 24000 cm ³) (3 marks)
	V-20	
	(e)	Give one use of element V. (1 mark)
4	(-)	
2.	(a)	Describe the process by which nitrogen is obtained from air on a large scale. (4 marks)
		,
	(b)	Study the flow chart below and answer the questions that follow.
		Nitrogen gas
	0.00	Ammonia Copper (II) oxide Copper
	S	tep (I) Air Step (VI) Heat
		Platinum-Rhodium High temperature Water
	1	Gas J
	St	ep (II) ▼ Air
		Nitrogen Water, air Nitrie (V) Ammonia Ammonium
	l	(IV) oxide Step (III) _acid Step (IV) nitrate
		Step (V) Heat
		Products


(i)	Identify	545 5.		(1 ma
(ii)	Using ox	cidation numbers show that a	mmonia is the reducing agen	t in step (VI)

(iii)	Write the	e equation for the reaction tha	a, a consistencia de la constante en esta esta en entre en en entre entre en entre ent	(1 ma
(iv)	Give two	uses of ammonia nitrate.	······	(2 mar
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-X25301-5777

cation -	n of elemer	shows the observation made ats E, F and G until in excess Addition of a few drops	when aqueous ammonia wa	*******************************
cation - Catio	n of elemer	shows the observation made ats E, F and G until in excess Addition of a few drops of aqueous ammonia	when aqueous ammonia wa Addition of excess aqueous ammonia	***************************************
cation -	n of elemer	shows the observation made ats E, F and G until in excess Addition of a few drops of aqueous ammonia White precipitate	Addition of excess aqueous ammonia Insoluble	***************************************
Cation Cation	n of elemen	shows the observation made ats E, F and G until in excess Addition of a few drops of aqueous ammonia	when aqueous ammonia wa Addition of excess aqueous ammonia	***************************************
Cation Cation E F	n of elemen	shows the observation made ats F, F and G until in excess Addition of a few drops of aqueous ammonia White precipitate No precipitate	Addition of excess aqueous ammonia Insoluble No precipitate Dissolves	s added to
Cation E F	of elements on of Select the	shows the observation made ats E, F and G until in excess Addition of a few drops of aqueous ammonia White precipitate No precipitate White precipitate	Addition of excess aqueous ammonia lusoluble No precipitate Dissolves	s added to
Cation E F	of elements on of Select the	shows the observation made ats E, F and G until in excess Addition of a few drops of aqueous ammonia White precipitate No precipitate White precipitate white precipitate cation that is likely to be Zr	Addition of excess aqueous ammonia lusoluble No precipitate Dissolves	s added to
Cation E F	of elements on of Select the	shows the observation made ats E, F and G until in excess Addition of a few drops of aqueous ammonia White precipitate No precipitate White precipitate white precipitate cation that is likely to be Zr	Addition of excess aqueous ammonia Insoluble No precipitate Dissolves 1 Clement H is H2 write the in	s added to
Cation E F G (i)	of elements on of Select the	shows the observation made ats F, F and G until in excess Addition of a few drops of aqueous ammonia White precipitate No precipitate White precipitate e cation that is likely to be Zanata the formula of the cation of action between F2' (aq) and a section between F2' (aq) and a	Addition of excess aqueous ammonia Insoluble No precipitate Dissolves 1 Clement H is H2 write the in	s added to

3.	(a)	Methan equation	ol is manufactured from carbon (IV) oxide and hydrogen gas ac	ccording to the	
		$CO_{3(g)}$ +	$-3H_{2(g)} : = CH_3OH_{(g)} + H_2O_{(g)}$		
		The read Under the converte	etion is carried out in the presence of a chromium catalyst at 70 nese conditions, equilibrium is reached when 2% of the carbon of to methanol.	0K and 300k pa. (IV) oxide is	
		(i) H	low does the rate of the forward reaction compare with that of t eaction when 2% of the carbon (IV) oxide is converted to methal	mol? (1 mark)	

		16555 Vest :	······································	·······	
		(ii) Ex	splain how each of the following would affect the yield of meth		
		I	reduction in pressure	(2 marks)	ì
		II			
		**	using more efficient catalyst	(2 marks)	

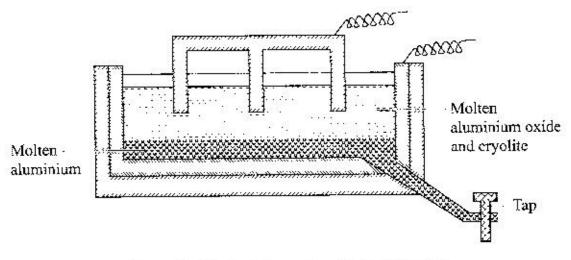
	(i	iii) If th oxid	e reaction is carried out at 500k and 300k pa, the percentage of the converted to methanol is higher than 2%.	carbon (IV)	
		1	What is the sign of AH for the reaction? Give a reason	(2 marks)	

		H	Explain why in practice the reaction is carried out at 700K but no	ot at 500K (2 marks)
			3	•••••••••••••••••••••••••••••••••••••••
			······	
(b)	Hydr	ogen p	eroxide decomposes according to the following equation:	
	2H ₂ C) ₂ (aq) -	$\rightarrow 2H_2O(I) + O_2(g)$	
			ment the rate of decomposition of hydrogen peroxide was found to moldm 3S 1) be
	(i)		ulate the number of moles per dm ³ of hydrogen peroxide that has mposed within the first 2 minutes.	(2 marks)
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••••••••
			······································	
	(ii)		other experiment, the rate of decomposition was found to be	
			< 10 1 moldm 3S 1. The difference in the two rates could have bee	
			Idition of a catalyst. State giving reason, one other factor that may ed the difference in the two rates of decomposition.	
		Calist	ed the difference in the two rates of decomposition.	(2 marks)

		,,,,,,,,		

(a) The set up below can be used to produce sodium hydroxide by electrolysing brine.

(i)	Identify gas Y. (1 mark
	,
(ii)	Describe how aqueous sodium hydroxide is formed in the above set-up. (2 marks
	······································
(iii)	One of the uses of sodium hydroxide is in the manufacture of soaps. State one other use of sodium hydroxide. (1 mark)


(b) Study the information given below and answer the questions that follow

£0.	
Half reactions	T
ii	Electrode potential E^0V
$D_{(\omega g)}^{2+} + 2e \rightarrow D_{(e)}$	0.13
$E_{(aq)}^{+} + e^{-} \Rightarrow E_{(a)}^{-}$	+0,80
$F_{(aq)}^{3+} + e \mapsto F_{(aq)}^{2+}$	+0.68
G_{logi}^{2+} 2e $\rightarrow G_{log}$	2,87
$H_{iqj}^{74} \div 2e \longrightarrow H_{(s)}$	+0,34
$J_{(ay)}^{\dagger}+e \leftarrow +J_{\underline{G}}$	2.71
V C .: 2	

16504

(i)	Construct an electrochemical cell that will produce the largest c.m.f.	(3 marks)
		.,
(ii)	Calculate the e.m.f. of the cell constructed in (i) above.	(2 marks)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(iii)	Why is it not advisable to store a solution containing E^{\pm} ions in a corof H?	ntainer made (2 marks)

5. The diagram below represents a set up of an electrolytic cell that can be used in the production of aluminium.

Kenya Certificate of Secondary Education, 2016 233/2

(a)	On the diagram, label the anode.	(1 mark)
(b)	the reaction at the anode.	(1 mark)
(c)	Give a reason why the electrolyte process is not carried out below 950°C.	(1 mark)
(d)	Give a reason why the production of aluminium is not carried out using reduprocess.	ction
(e)	Give two reasons why only the aluminium ions are discharged.	(2 marks)
(f)	State two properties of duralumin that makes it suitable for use in aircraft indi-	ustry. (2 marks)
		······································
(g)	Name two environmental effects caused by extraction of aluminium.	(2 marks)

Draw the structural formula for all the isomers of C ₂ H ₃ Cl ₃ .	(2 marks)	
The following scheme represents various reactions starting with propan-1-ol. Unanswer the questions that follow.		
Oxidation Step III Propanoic acid Step IV Add sodium carbonate		
(i) Name one substance that can be used in Step I.	(1 mari	
(ii) Give the general formula of X.	(1 mar	
	Describe two chemical tests that can be used to distinguish between ethene and The following scheme represents various reactions starting with propan-1-ol. It answer the questions that follow. Prop-1-ene	

6.

	(iii)	Write	the equation for t	he reaction in Step IV	v.	(I mark)	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•••••	
		*	*******************				
	(iv)	temperature and pressure would produce 18dm^3 of gas. (C = 12.0, O = 16 H = 1.0; molar gas volume = 24 dm ³)					
		AGK 67.	,o.a. g.c., . 010	mik – 24din')		(3 marks)	
		*					
		*********	,				
		**********	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			
(a)	Write	an couat	ion to show the of	feets of heat on the n			
3,490				needs of neat on the n	aitrates of:		
	(i)	Potassiu	ım			(1 mark)	
		•		d	······		
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	(ii)	Silver				***************************************	
						(1 mark)	
		•					
			***************************************			*******************************	
(b)	The tab	de below	gives informatio	n about clements A,	Λ_n A. and A.		
	r -	nents	Atomic	······································	<u></u> 8		
	-		Number	Atomic radius (nm)	Atomic radius (nm)		
	Al		3	0.134	0.074		
	A2 A3		5	0.090	0.012		
	A4		13 17	0.143	0.050		
	23		-	1 4.477	0.181		

7.

(i)	In which period of the periodic table is element A2? Give a reason.	(2 marks					

(ii)	Explain why the atomic radius of:						
	I Al is greater than that of A2	(2 marks					
	· · · · · · · · · · · · · · · · · · ·						
	II Al is smaller than its ionic radius.	(2 marks					
		./					
(iii)	Select the element which is in the same group as A3.	(1 mark					
(iv)	Using Dots (.) and crosses (x) to represent outermost electrons, draw show the bonding in the compound formed when A1 reacts with A4.						

2 2

THIS IS THE LAST PRINTED PAGE.