

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

SECOND YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE IN AGRONOMY, HORTICULTURE & SOIL SCIENCE AND AGRICULTURAL EDUCATION & EXTENSION WITH INFORMATION TECHNOLOGY

MAIN CAMPUS

AAG 208: GENERAL PLANT PHYSIOLOGY

Date: 22sd June, 2017

Time: 8.30 - 11.30am

INSTRUCTIONS:

· Answer ALL Questions in section A and any other TWO in section B.

ISO 9001:2008 CERTIFIED

Section A (50 marks)

Į1.	
a). Distinguish between the following:	
 (i) Bulk flow and diffusion. (ii) Solute chemical potential and solute potential. (iii) Apoplast and symplast pathways of water ascent in plan 	(2 marks) (2 marks)
(iv) Grana thylakoid and stroma thylakoid. (v) Oxidative and reductive reactions of photosynthesis.	(2 marks) (2 marks) (2 marks)
 b). Highlight the significance of the following: 	
 (i) The nearly constant volume of water to cell expansion. (ii) Water's high latent heat of evaporation to the process of 	(2 marks) f transpiration.
 (iii) Matrix to the plant cell water potential (ψ_{cell}). (iv) Cohesion to sap ascent up crop plants. (v) Carotenoids to light dependent stage of photosynthesis. 	(2 marks) (2 marks) (2 marks)
22. What	
a). Is the cell theory?	(2 marks)
 b). Is the respiratory quotient (RQ) of lauric acid (C₁₂H₂₄O₂) marks) 	? (2
 c). Is the role of the casparian strip of the root endodermis in development of root pressure? marks) 	the (3

d). Are the requirements for a perfect osmotic system? (3 marks)

Q3.

- a). Why do the plant leaves appear green in colour? (2 marks)
- b). Highlight the fate of the excitation energy following absorption of light photons by plant photosynthetic pigments. (3 marks)
- c). Reconcile the relatively high photosynthetic action spectrum of green light yet its (green light's) absorption spectrum is nearly zero.

(5 marks)

Q4.

a). Define water potential (ψ).

(2 marks)

- b). What are the major differences between vessel elements and tracheids of the xylem tissues? (3 marks)
- c). How can students of plant physiology demonstrate tension (negative pressure) of the sap in xylem tissues in a laboratory? (5 marks)

Section B (20 marks)

Attemptany two (2) questions from this section

Q5.

- a) In C4 species, incoming carbon dioxide (CO₂) is initially fixed to a four carbon acids, malic or aspartic. These four carbon acids are later decarboxylated to release the initially fixed CO₂ to be fixed into a three carbon acid. Justify this rather repetitive way of fixing CO₂ in this group of plants. (4 marks)
- Explain the three major components of the Calvin (C-3 photosynthetic carbon reduction) cycle. (6 marks)

O6.

- a) Other than driving forces, outline the other components of the cohesion mechanism of sap ascent in plants. (2 marks)
- b) Discuss the driving forces component of the cohesion mechanism of sap ascent in plants. (8 marks)

O7.

Compare and contrast the cyclic and non-cyclic electron transport during light dependent stage of photosynthesis. (10 marks)