

MURANG'A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University of Agriculture & Technology)

University Examinations

School of pure & Applied Sciences

End of Semester Examination Certificate in Bridging Mathematics

SMB 0103: CALCULUS

DATE: 9TH DECEMBER 2015

TIME: 2Hours

INSTRUCTIONS: Answer Question One and Any Other Two Questions

QUESTION ONE (30 MARKS)

a) Find the derivative of $y = 2x^3 + 3x^2$ from the first principles.	(5mks)
b) Given that $\mathbf{y} = \mathbf{sin}^5 \mathbf{x}$, find $\frac{dy}{dx}$	(6mks)
(c) The distance, x metres moved by a car in a time, t seconds is given	

 $x = 3t^3 - 2t^2 + 4t - 1$. Determine the velocity and acceleration when

t = 0 and t = 1.5s (6mks)

d) Find the equation of the tangent to the curve described by the equation

$$\mathbf{y} = \mathbf{x}^4 - 3\mathbf{x}^2 + 2\mathbf{x}$$
 at the point where $\mathbf{x} = 2$ (4mks)

e) Evaluate

$$\int_{0}^{2} (x^{2} + 2x + 1) \, dx \tag{4mks}$$

(f) Find the area bounded by the curve $y = 4x^3 + 1$ between x = 2 and x = 4 using the trapezium rule with intervals of 0.5 of a unit. Also compute the same area using the method of direct integration. (5mks)

QUESTION TWO (20 MARKS)

(a) Evaluate the following

i)
$$\int_{1}^{5} (x+4)^2 dx$$
 (4mks)

ii)
$$\frac{dy}{dx}$$
 given that $y = \frac{(x^2 + 8x)}{(x+1)}$ (4mks)

iii)
$$\int (2+x)dx$$
 (2mks)

(b) A rectangular block, with a square base of side x mm, has a total surface area of 150 mm^2 . Show that the volume of the block is given by;

$$V = \frac{1}{2}(75x - x^3) mm^3$$

and hence find the maximum volume of the block.

QUESTION THREE (20 MARKS)

(a) Find the turning points of $y = x^3 - 3x + 5$. Distinguish between them. (10mks)

(b) An object moves along a straight line in such a way that its distance from a fixed-point 0

on the line after t seconds is S meters, where $S = \frac{1}{6}t^4$ find;

i)	its velocity after 3 seconds and after 4 seconds	(2mks)
ii)	its average velocity during the 4 th second	(3mks)
iii)	it acceleration after 2 seconds and after 4 seconds	(2mks)
iv)	its average acceleration from $t = 0$ to $t = 4$	(3mks)

QUESTION FOUR (20 MARKS)

(a) A farmer erects a fence along three sides of a rectangle in order to make a sheepfold, the

fourth side of the rectangle is provided by a hedge already in existence. Find the maximum area of enclosure thus made if the total length of the fence is to be 80m.

10mks

(10mks)

(b) Find
$$\frac{dy}{dt}$$
 given that; (i) $y = \frac{2}{(2t^3 - 5)^4}$ (6mks)

(ii)
$$y = 5e^{2t+1}$$
 (4mks)