

# MURANG'A UNIVERSITY COLLEGE <br> (A Constituent College of Jomo Kenyatta University of Agriculture \& Technology) <br> University Examinations <br> School of pure \& Applied Sciences <br> End of Semester Examination Certificate in Bridging Mathematics <br> SMB 0103: CALCULUS 

DATE: $9^{\mathrm{TH}}$ DECEMBER 2015
TIME: 2Hours
INSTRUCTIONS: Answer Question One and Any Other Two Questions

## QUESTION ONE (30 MARKS)

a) Find the derivative of $\mathbf{y}=\mathbf{2} \mathbf{x}^{\mathbf{3}}+\mathbf{3} \mathbf{x}^{\mathbf{2}}$ from the first principles .
b) Given that $\mathbf{y}=\sin ^{5} \mathrm{x}$, find $\frac{d y}{d x}$
(c) The distance, x metres moved by a car in a time, t seconds is given

$$
\begin{align*}
& \mathbf{x}=\mathbf{3 \mathbf { t } ^ { 3 } - 2 \mathbf { t } ^ { 2 } + \mathbf { 4 t } - \mathbf { 1 } . \text { Determine the velocity and acceleration when }} \\
& \mathbf{t}=\mathbf{0} \text { and } \mathbf{t}=\mathbf{1 . 5 s} \tag{6mks}
\end{align*}
$$

d) Find the equation of the tangent to the curve described by the equation
$\mathbf{y}=\mathbf{x}^{4}-\mathbf{3} \mathbf{x}^{\mathbf{2}}+\mathbf{2 x}$ at the point where $\mathrm{x}=\mathbf{2}$
e) Evaluate

$$
\begin{equation*}
\int_{0}^{2}\left(x^{2}+2 x+1\right) d x \tag{4mks}
\end{equation*}
$$

(f) Find the area bounded by the curve $y=4 x^{3}+1$ between $x=2$ and $x=4$ using the trapezium rule with intervals of 0.5 of a unit. Also compute the same area using the method of direct integration.

## QUESTION TWO (20 MARKS )

(a) Evaluate the following
i) $\quad \int_{1}^{5}(x+4)^{2} d x$
ii) $\frac{d y}{d x}$ given that $y=\frac{\left(x^{2}+8 x\right)}{(x+1)}$
iii) $\int(2+x) d x$
(b) A rectangular block, with a square base of side x mm , has a total surface area of $150 \mathrm{~mm}^{2}$. Show that the volume of the block is given by;

$$
\mathrm{V}=\frac{1}{2}\left(75 x-x^{3}\right) \mathrm{mm}^{3}
$$

and hence find the maximum volume of the block.
(a) Find the turning points of $\mathbf{y}=\mathbf{x}^{\mathbf{3}}-\mathbf{3 x}+\mathbf{5}$. Distinguish between them.
(b) An object moves along a straight line in such a way that its distance from a fixed-point 0 on the line after t seconds is S meters, where $\mathrm{S}=\frac{\mathbf{1}}{\mathbf{6}} \mathrm{t}^{4}$ find;
i) its velocity after 3 seconds and after 4 seconds
ii) its average velocity during the $4^{\text {th }}$ second
iii) it acceleration after 2 seconds and after 4 seconds
iv) its average acceleration from $t=0$ to $t=4$

## QUESTION FOUR (20 MARKS)

(a) A farmer erects a fence along three sides of a rectangle in order to make a sheepfold, the
fourth side of the rectangle is provided by a hedge already in existence. Find the maximum area of enclosure thus made if the total length of the fence is to be 80 m .

10 mks
(b) Find $\frac{d y}{d t}$ given that;
(i) $y=\frac{2}{\left(2 t^{3}-5\right)^{4}}$
(6mks)
(ii) $\mathrm{y}=5 e^{2 t+1}$

