

MURANG'A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology)
University examination
School of Pure and Applied Sciences
End of Semester Examination
UNIT CODE; SMB 0105
DATE: $18^{\text {th }}$ MAY. 2015
Bridging Certificate in Mathematics
UNIT TITLE : GRAPHS
TIME: 2 HRS

INSTRUCTIONS: Answer question one and any other two questions

Question one (30Mks)
a) The gradient of a line PQ is 3 . The co-ordinates of P and Q are $(5,2)$ and $(6, y)$ respectively. Find the value of y
b) Solve the following simultaneous equations graphically
i. $\quad 2 y+2 x=3$

$$
\begin{equation*}
5 x+y=7 \tag{5mks}
\end{equation*}
$$

ii. $\quad y=x$
$3 x+2 y=42$
c) Draw the graph of $y=x^{2}+4 x-5$ for the range $-7 \leq \boldsymbol{x} \leq \mathbf{3}$ and state the line of symmetry
d) If Z varies directly as the cube root of x and inversely as the square of Y . Express Z in terms of X and Y given that $Z=24$ when $X=27$ and $Y=2$. Hence find Z when $X=8$ and $\mathrm{Y}=3$.
(6mks)
e) Solve the following inequality

$$
\begin{equation*}
\frac{3 x}{2}-\frac{x-1}{3}<\frac{3 x-2}{2} \tag{4mks}
\end{equation*}
$$

QUESTION TWO (20 MKS)

(a) Consider the following linear equations
$x \geq 104 x+3 y \leq 120 \quad y \geq 3 x-45 \quad y \geq 5 \quad$ By shading the unwanted region, plot these linear in equalities and indicate the wanted region.
(b) If V varies inversely as the cube of X and directly as the cube root of Z . find the relationship between Z, V and X if $\mathrm{V}=15$ when $\mathrm{X}=6$ and $\mathrm{Z}=64$

Find Z when $\mathrm{V}=50$ and $\mathrm{X}=25$
Find X , when $\mathrm{V}=55$ and $\mathrm{Z}=64$
Find V, when $Z=8$ and $X=2$
)
(a) A car park is to be laid for x matatus and y buses. Matatus are allowed $10 \mathrm{~m}^{2}$ and buses are allowed $20 \mathrm{~m}^{2}$ of space and there is only $500 \mathrm{~m}^{2}$ of space available. Not more than 40 vehicles are allowed at a time. There are always both type of vehicles parked and at the most 15 buses are allowed at a time.
(i) Write down all the inequalities based on these facts.
(ii) Represent these inequalities on the xy-plane and show the region that satisfy all the inequalities.
(iii) The parking charges for a matatu is shs. 5 and that of a bus is shs. 20 per day. Find how many vehicles of each type must be parked on the lot in order to obtain maximum income.
(b) For an in service course in mathematics at least four but not more than nine teachers are to be chosen. The ratio of the number of male teachers to the number of female teachers must be less than 2:1 and there must be more males than females. If x and y represent the number of male and female teachers respectively, write down in the simplest form the inequalities which x and y must satisfy. Represent these on a graph and find the composition of the in service group of;
(i) The largest size
(ii) The smallest size.

QUESTION FOUR (20MKS)

(a) Copy and complete the table below by filling the blank spaces

$\mathrm{X}(\operatorname{deg})$	0	30	60	90	120	150	180	210	2450	270	300	330	360
$-4 \sin \mathrm{x}$	0			-4						4			0
$\mathrm{Y}=3-4 \operatorname{Sin} \mathrm{x}$	3					1	3						3

On the same axis and scale draw the graphs of $y=3-4 \sin x$ and $y=(x / 160)-1.5$.
Hence use your graph to solve the following.
I) 3-4 $3 \sin x=0$
II) $3-4 \sin x=(x / 160)-1.5$
 use your graph to solve the equation ; $4 \mathbf{x}^{\mathbf{2}} \mathbf{- 9 x}-\mathbf{8}=\mathbf{0}$

