MURANG’A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University OF Agriculture and Technology)
University examination
School of Pure and Applied Sciences
End of Semester Examination
Certificate in Bridging Mathematics
UNIT CODE; SMB 0102
UNIT TITLE: GEOMETRY
DATE: $7^{\text {th }}$ DECEMBER, 2015
TIME: 2 HRS

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE (30Mks)
Q1. (a) Without using calculators or tables
(I) obtain $\tan 240^{\circ}$ leaving your answer in surd form.
(3mks)
(ii) solve for $\theta, 0^{\circ}<\theta<90^{\circ}$ if $\cos \left(3 \theta+20^{\circ}\right)=\sin (4 \theta)$
(b) Calculate the number of sides of a regular polygon whose ;
(i) interior angle is 135°
(ii) exterior angle is 72°
(c) Draw a triangle $A B C$ without using a protractor such that $A B=5 \mathrm{~cm}$
Angle $A B C=45^{\circ}$ and angle $B A C=60^{\circ}$.
(i) measure $A C$ and $B C$
(ii) drop a perpendicular from A to $B C$
(d) Draw a line $A B=6 \mathrm{~cm}$. Construct the locus of point P such that $A P=P B$
(e) James whose height is 1.8 m observes his shadow to be 4.8 m long on the horizontal ground.

Calculate the angle of elevation to the sun at that time.
(f) The interior angles of a hexagon are $2 x, \frac{1}{2} x, x+40^{\circ}, 110^{\circ}, 130^{\circ}$ and 160°. calculate the smallest angle.
(g) Construct a regular hexagon of side 4 cm by inscribing it in a circle.
(h) Jane walks from a point A on a bearing of 30° for 5 km and then walks due south to a point 8 km from A . calculate;
(i) Jane's new bearing from A
(ii) Jane's total distance covered.

QUESTION TWO. (20 marks)

(a) (i) without using a protractor and/or setsquare, draw a pentagon $A B C D E$ with $A B=8 \mathrm{~cm}$, $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{CD}=5.2 \mathrm{~cm},<\mathrm{EAB}=150^{\circ},<\mathrm{ABC}=120^{\circ},<\mathrm{CDE}=60^{\circ}$.
(ii) Measure DE and angle AED
(b) Solve the following equations;

$$
\text { i } \sin \left(2 A+10^{\circ}\right)=\cos (3 A), 0^{\circ} \leq A \leq 90^{\circ}
$$

ii $2 \sin 2 \theta+1=0 \quad 0^{\circ} \leq \theta \leq 360^{\circ}$
[5mks]
(c) If the angle of elevation of the top of a vertical 30 m high aerial is 32°, how far is it to the aerial?
(5mks)

QUESTION THREE. (20 marks)

(a) Draw a line $A B=10 \mathrm{~cm}$. Draw a circle of radius 3 cm centered at B Draw a tangent from A to a point P on the circle you have drawn. Measure the length of the tangent and angle ABP. (5mks)
(b) Solve the following trigonometric equations:

$$
\begin{align*}
& \text { i } 2 \sin ^{2} x+1=3 \sin x \quad 0^{0} \leq x \leq 360^{\circ} \\
& \text { ii } 3 \cos ^{2} \theta-4 \cos \theta-4=0 \quad 0^{\circ} \leq \theta \leq 360^{\circ} \tag{8mks}
\end{align*}
$$

(c) Evaluate $\cos \left(-210^{\circ}\right)$ without using tables or calculator leaving your answer in surd form.
(d) Construct triangle $A B C$ where $B C=6 \mathrm{~cm} A B=8 \mathrm{~cm}$ and angle $A B C=135^{\circ}$ without using a protractor. Measure $<B A C,<B C A$ and line $A C$

QUESTION FOUR. (20 marks)

(a) Given that $\mathrm{AB}=\binom{2}{3}$ and $\mathrm{BC}=\binom{-2}{4}$, work out;
i $A B+B C$ (1mk)
ii $\frac{1}{2} \mathrm{BC}$ (1 mk)
iii -3AB (1mk)
iv $A B-2 C B$
(b) Find the values of x and y if $\binom{1-x}{3}=\binom{6}{2 y+1}$
(c) if $\binom{2}{8}$ and $\binom{4}{x+3}$ are parallel vectors, find the value of x
(d) (I) what is the image of triangle $A B C$ with $A(-3,5) B(2,1) C(-5,0)$ after a translation vector $\binom{4}{3}$?
(e) From the top of a vertical cliff 80 m high the angles of depression of two boats lying due west of the Cliff are 23° and 15° respectively. How far are the boats apart?

