

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@must.ac.ke

### University Examinations 2013/2014

# SECOND YEAR, SECOND SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL ENGINEERING

# ECV 0230: SOIL MECHANIC II

# DATE: APRIL 2014

TIME: 1 <sup>1</sup>/<sub>2</sub> HOURS

(3 Marks)

**INSTRUCTIONS:** Answer question one and any other two questions

### **QUESTION ONE - (30 MARKS)**

- (a) Define the following;
  - (i) Consolidated undrained test
  - (ii) Shear strength
  - (iii) Slope stability
- (b) During subsurface exploration at a new roadway embankment soil samples were collected from a CL soil layer. The results of the CD triaxial testing for the soils were presented as below.

| Test | Minor principal stress at failure $T'$ (ps) | Major principal stress at failure T (ps) |
|------|---------------------------------------------|------------------------------------------|
| 1    | 5                                           | 23                                       |
| 2    | 10                                          | 38.5                                     |
| 3    | 15                                          | 53.6                                     |

Determine the effective and total Mohr-Coulomb failure of the soil. (5 Marks)

(c) In each case, stating an advantage and disadvantage briefly explain the methods of determine shear strength.
 (6 Marks)

- (d) A uu test carried on a saturated normally consolidated clay sample at a confining pressure of 3kg/cm. The deviator stress at failure was 1kg/cm
- (i) Determine its total strength parameters. (2 Marks)
  (ii) If another identical sample was tested at confining pressure of 4kg/cm determine the vertical axial stress at failure. (2 Marks)
  (e) Briefly explain any three methods of analysis slope stability. (9 Marks)
- (f) State any three causes of failure in retaining walls. (3 Marks)

#### **QUESTION TWO - (15 MARKS)**

(a) Results of a test conducted on two saturated clay sample are give below. Determine the shear strength parameter of the soil

|                                | Sample 1 | Sample 2 |
|--------------------------------|----------|----------|
| Confining pressure             | 4.8kg/cm | 6.3kg/cm |
| Axial stress at failure        | 6.8kg/cm | 9.3kg/cm |
| Pore water pressure at failure | 3.8kg/cm | 4.8kg/cm |

(b) State the significance of shear strength to a civil engineer.

(3 Marks)

(c) Soil from a local contractor soil pit is proposed for use as backfill behind a mechanically stabilized earth dam for a local project. The project specification requires that the backfill material to have a minimum residual soil friction angle of 32° at the required compaction (95 % modified procto). The results from the direct testing performed at the minimum required compaction by a local testing firm are as shown below:

| ning stress shear | stress i (psi)                                     |
|-------------------|----------------------------------------------------|
| ) peak            | residual                                           |
| 5.5               | 4.4                                                |
| 14.0              | 11.8                                               |
| 18.4              | 17.0                                               |
| i                 | ning stress shear<br>) peak<br>5.5<br>14.0<br>18.4 |

- (i) Determine the peak and residual friction angle to the soil. (4 Marks)
- (ii) Determine if the soil meets the project specification (1 Mark)
- (iii) Explain density of the soil based on direct shear results (2 Marks)

#### **QUESTION THREE – (15 MARKS)**

- (a) State the following theories:
  - (i) Mohr Columb theory
  - (ii) Rankin theory (2 Marks)
- (b) Explain four engineering and structures methods of stability slopes. (8 Marks)
- (c) The following results were obtained on two saturated soil sample.

|      |                           | Sample 1 | Sample 2 |
|------|---------------------------|----------|----------|
| Conf | ining pressure            | 3.8      | 5.4      |
| Axia | l stress at failure       | 5.8      | 9.2      |
| Pore | water pressure at failure | 2.4      | 4.4      |
|      |                           |          |          |
| Dete | rmine                     |          |          |
| (i)  | Friction force            |          |          |
| (ii) | Cohesion of soil          |          |          |

# (5 Marks)

#### **QUESTION FOUR – (15 MARKS)**

(a) Briefly explain any three methods of dealing with deep seated mass failure in soils.

(6 Marks)

- (b) A region residential building contractor is planning on building a custom 3700fts home. The subsurface investigation for the house site shows the poorly graded sand deposit exists from ground surface to a depth of 15ft. Density testing on the sand insitu yielded an average moist weight pcf at an average moisture contentof 12%. Determine the shear parameters for use in a prelimary shallow foundation design. (5 Marks)
- (c) Briefly explain any two factors that affect formation of tropical. (4 Marks)