

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL ENGINEERING

ECV 0229: ENGINEERING SURVEY III

DATE: APRIL 2014

TIME: 1 ¹/₂ HOURS

INSTRUCTIONS: Answer question one and any other two questions

QUESTION ONE – (30 MARKS)

(a)	Differentiate the following concepts:		
	(i)	Global positioning system (GPs) and differential global p (DGPS)	ositioning system
	(ii)	Elevation and super elevation	
	(iii)	Systematic error and random errors	(3 Marks)
(b)	Calculate the actual construction radius of a curve section of a road whose design speed		
	is 120)Km/hr and the carriage width is 6.7m.	(3 Marks)
(c)	State and explain the three main guidelines of performing a three point resection.		
			(3 Marks)
(d)	With an aid of a diagram, explain the following types of curves.		
	(i)	Transition curves	(2 Marks)
	(ii)	Compound circular curves	(2 Marks)
	(iii)	Reserve circular curves	(2 Marks)
(e)	(i) De	fine the term 'traverse'	(1 Marks)
	(ii) Ez	xplain the following types of closed traverse	
		i. Loop traverse	(2 Marks)
		ii. Connecting traverse	(2 Marks)
(f)	Explain the following concepts		
	(i)	Triangulation network	(2 Marks)
	(ii)	Trilateration network	(2 Marks)

(g) The following data was extracted from a survey booking;Angle of deflection $\theta = 24^{\circ}18/00^{//}$ Radius 'R' = 620mDetermine(i) Tangent length(ii) Long chord length(iii) Tangential angle of the circular curve under establishment.(2 Marks)(2 Marks)

QUESTION TWO – (15 MARKS)

- (a) Two straight roads section *TI and Iu* meet at a deflection angle of 4°32′00′′ are to be connected by a 4°circular curve. The through chainage of the intersection points is 272.74 M and the bearing of *TI* is 18°00′ Calculate the bearing which must be set off from T and u to fix the first two pegs on the circular curve. Assume that the pegs are to be set at exact 20m multiples of through chainage. (8 Marks)
- (b) Explain the significance of super elevation in curve sections of roads. (2 Marks)
- (c) (i) Calculate the value of super elevation (SE) of a road section whose carriage way width is 7.3m and its design speed is 80Km/hr.(3 Marks)
 - (ii) Based on stipulated DoE allowable SE values. Comment on the obtained value. (2 Marks)

QUESTION THREE – (15 MARKS)

- (a) As an engineer assume that the university management has appointed you to design a curve that connects two straight roads at a deflection angle of 24°18′24′′. The circular curve has a radius of 660m. Using tangential angle method make all necessary calculation for setting out the curve. Take a through chainage of intersection point to be 2470.85m and pegs internal of 25m. (8 Marks)
- (b) Briefly explain the three major component segments in GP. (7 Marks)

QUESTION FOUR – (15 MARKS)

(a) Explain any four methods of setting circular curves in road.
(b) State any five types of errors that a regular GPs receives may experience.
(c) Convert a 400m radius curve into a degree curve.
(2 Marks)