MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY
P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411
Fax: 064-30321
Website: www.must.ac.ke Email: info@must.ac.ke

University Examinations 2013/2014

SECOND YEAR, SECOND SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL
ENGINEERING
ECV 0228: THEORY OF STRUCTURES III
DATE: APRIL 2014
TIME: $1^{1 ⁄ 2} 2$ HOURS
INSTRUCTIONS: Answer question one and any other two questions
QUESTION ONE - (30 MARKS)
(a) A simple beam AB of span length 7 m must support a uniform load $q=60 \mathrm{kN} / \mathrm{m}$ distributed as shown in figure Q 1(a).
(i) Draw shear force and bending moment diagrams
(ii) Determine the required section modulus S if the allowable bending stress
$\sigma_{\text {allow }}=110 \mathrm{MPa}$
(15 Marks)
(b) A 50 mm by $75 \mathrm{~mm}, 1.5 \mathrm{~m}$ long bar of negligible weight is loaded as shown in figure Q 1(b). Determine the maximum tensile and compressive stresses acting normal to the section through the beam.
(15 Marks)

QUESTION TWO - (15 MARKS)

A channel beam having the cross-sectional shape shown in the figure Q2 is simply supported at the ends (span length $\mathrm{L}=3 \mathrm{~m}$) and carries a concentrated load $P=90 \mathrm{kN}$ at the midpoint. Determine the maximum tensile stress σ_{t} and maximum compressive stress σ_{c} due to the load P , assuming $\mathrm{b}=450 \mathrm{~mm}, \mathrm{~h}=180 \mathrm{~mm}$, and $\mathrm{t}=30 \mathrm{~mm}$.
(15 Marks)

QUESTION THREE - ($\mathbf{1 5}$ MARKS)

The end regions of bar AB (see figure Q 3) have square cross-sections with sides of length b. In the middle of the bar the cross-sectional area is reduced by one half by cutting a notch of depth $b / 2$. An axiel load P acts at the centroid of the cross-section at end B. Determine the maximum tensile σ_{t} and compressive σ_{c} stresses at section mn within the reduced region of the bar.
(15 Marks)

QUESTION FOUR - (15 MARKS)

A composite beam having the cross-sectional dimensions shown in figure Q 4 is subjected to a positive bending moment $\mathrm{M}=4 \mathrm{kN} . \mathrm{m}$. Calculate the maximum and minimum stresses in both materials of the beam assuming $E_{1}=7 G P a$ and $E_{2}=140 G P a$
(15 Marks)

