

# MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 – Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@must.ac.ke

#### **University Examinations 2013/2014**

# SECOND YEAR, FIRST SEMESTER EXAMINATION FOR DIPLOMA IN CIVIL ENGINEERING

### ECV 0224: SOIL MECHANICS I

### DATE: APRIL 2014

TIME: 1 <sup>1</sup>/<sub>2</sub> HOURS

**INSTRUCTIONS:** Answer question **one** and any other **two** questions

### **QUESTION ONE – (30 MARKS)**

- (a) Define the following terms as applied in soil
  - (i) Percentage air voids
  - (ii) Specific gravity of soil particles
  - (iii) Degree of saturation
  - (iv) Moisture content (4 Marks)
- (b) Define the term compaction. (2 Marks)
- (c) A sample of moist soil has a volume of 14.88cm<sup>3</sup> and weighs 28.81g. After complete drying out in an oven its weight is 24.83g. The density of solid particles is 2.7g/cm<sup>3</sup>. Calculate:
  - (i) The void ratio (3 Marks)
  - (ii)Degree of saturation(3 Marks)(iii)Percentage air voids(2 Marks)
- (d) Working from basic principles show that the expression for dry density of soil is given by

$$\gamma_d = \frac{G_s \gamma_w (1 - V_a)}{1 + mG_s}$$
 where  $V_a = air$  content. (4 Marks)

(e) In a sample of clay, the void ratio is 0.73 and the specific gravity of the particles is 2.68. If the voids are 85% saturated, determine:

| (i)   | Bulk density                    | (2 Marks) |
|-------|---------------------------------|-----------|
| (ii)  | The dry density                 | (2 Marks) |
| (iii) | The percentage moisture content | (2 Marks) |

| (f) Define permeability.                                          | (2 Marks) |
|-------------------------------------------------------------------|-----------|
| (g) State two methods of determining coefficient of permeability. | (2 Marks) |
| (h) Show that $\gamma_d = \frac{\gamma_b}{1+m}$                   | (2 Marks) |

#### **QUESTION TWO - (15 MARKS)**

- (a) Derive from basic principles the equation for the coefficient of permeability in a variable head permeameter.(5 Marks)
- (b) In a falling head permeameter, the head falls from 400mm to 250mm in a stand pipe of diameter 3.5mm. The sample through which water flows has a depth of 100mm and diameter of the sample is 75mm. If  $K = 2 \times 10^{-4} mm/s$ , determine the time required in minutes for water to fall from 400mm to 250mm in the stand pipe. (5 Marks)
- (c) A graded filter is constructed of 4 layers of soil. The layers are 8m, 1m, 6m and 10m thick and compacted to give permeabilities of  $3 \times 10^{-4} cm/s$ ,  $2.5 \times 10^{-8} cm/s$ ,  $8 \times 10^{-3} cm/s$ , and  $7.2 \times 10^{-2} cm/s$  respectively. Calculate the average coefficient of permeability in direction parallel to and at right angles to the layers. (5 Marks)

## **QUESTION THREE – (15 MARKS)**

In a standard compaction test on a soil ( $G_s = 2.68$ ) the following results were obtained:

| Water content (%) | Bulk Density (Kg/m <sup>3</sup> ) |
|-------------------|-----------------------------------|
| 2                 | 2019.60                           |
| 4                 | 2138.24                           |
| 6                 | 2230.24                           |
| 8                 | 2278.80                           |
| 10                | 2255.00                           |
| 12                | 2228.80                           |

Draw a graph of dry density against moisture content and determine the:

- (a) Maximum dry density
- (b) Optimum moisture content
- (c) Air content at the maximum dry density

(15 Marks)

### **QUESTION FOUR - (15 MARKS)**

- (a) A soil sample had a mass of 0.82Kg. After drying completely its mass was 0.72Kg. If the specific gravity of the solids was 2.65 and the sample size was 75mm diameter and 150mm long, calculate:
  - (i) Bulk density
  - (ii) Moisture content
  - (iii)Void ratio
  - (iv)Porosity
  - (v) Air porosity
  - (vi)Saturated unit weight

(12 Marks)

(b) A soil sample weighs 4.15kg. The volume and moisture content of the soil are 0.0025m<sup>3</sup> and 15% respectively. Calculate the void ratio. Take solid particle specific gravity as 2.69.

(3 Marks)