

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN BACHELOR OF PROCUREMENT AND SUPPLY CHAIN MANAGEMENT

BIT 305: SIMULATION AND MODELLING

(Main Campus)

DATE: 13TH APRIL, 2017

TIME: 4.00 - 6.00 PM

INSTRUCTIONS TO CANDIDATES

- a) Answer <u>ALL</u> questions from section A(Compulsory)
- b) Answer <u>ANY TWO</u> questions from section B

QUESTION ONE

a)	Define the terr	m Modelling	(2 Marks)
b)	Differentiate b	between	
	i.	Model and System	(2 marks)
	ii.	Simulation and Computer Simulation	(2 marks)
	iii.	Stochastic and Deterministic Simulation	(2 marks)
	iv.	Static and Dynamic Models	(2 Marks)
c)	Explain the fo	llowing terms in relation to Simulation Modelling	
	i.	Probability theorem	(2 marks)
	ii.	Random number generator	(2 marks)
	iii.	Bootstrapping	(2 marks)
d)	Outline any F	OUR Characteristics of a good Model	(4 marks)

e)	Discuss the importance of modeling and simulation as an enterprise	(4 Marks)
f)	Generate four-digit random numbers by linear congruential method with $X0 = 21$, $a = 34$	
	and $c = 7$.	(4 Marks)
g)	Describe the Evolution of the Simulation systems	(2 Marks)

SECTION B

QUESTION TWO

a)	Differentiate l		
	i.	Static and Dynamic Simulation	(2 Marks)
	ii.	Inversion method and acceptance rejection method	(2 Marks)
b)	Using a Diagr	am, describe the process of Discrete event Simulation	(10 Marks)
c)	Classic Car C	are has one worker who washes cars in a four-step metho	d-soap; rinse, dry,

- c) Classic Car Care has one worker who washes cars in a four-step method-soap; rinse, dry, vacuum. The time to complete each step is exponentially distributed, with mean 9 minutes. Every car goes through every step before another car begins the process. On the average, one car every 45 minutes arrives for awash job, according to a Poisson process.
 - i) What is the average time a car waits to begin the wash job?
 - ii) What is the average number of cars in the car wash system?
 - iii) What is the average time required to wash a car (6 Marks)

QUESTION THREE

a)	Differentiate between the following as used in stochastic model		
	i.	Time and state	(2 Marks)
	ii.	Activity and transition	(2 Marks)
b) Explain the Steps in the Monte Carlo Simulation (6		(6 Marks)	

- c) Take a typical operations system, preferably one that can be observed (e.g. a supermarket or airport), and complete the following.
 - i. Develop a conceptual model for this problem (6 Marks)
 - ii. Outline the objectives, experimental factors, model scope and assumptions

(4 Marks)

QUESTION FOUR

a) Differentiate between the following

i. C	ontinuous and Discrete Models	(2 Marks)
ii. E	xogeneous and endogenous variable	(2 Marks)
iii. E	vent and entity	(2 Marks)

b) An automobile insurance company places its policy holders into one of the two categories when the policy renew; low risk or high risk, based on a company data,

a motorist that is currently high risk has a 60% chance being denoted high risk again when the policy renews and a 40% chance of being moved to low risk on the other hand a low risk driver has a 15% chance of moving to the high risk category and an 85% chance of remaining low risk using the above information

i.	Define the markov property	(2 Marks)
ii.	set up the a probability tool for the above information	(2 Marks)
iii.	Explain the scenario using a transition diagram	(6 Marks)
iv.	Explain the above scenario with the aid of a transition matrix	(4 Marks)