2521/203, 2602/202 2601/202, 2603/202 DIGITAL AND ANALOGUE ELECTRONICS II Oct./Nov. 2016 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION) MODULE II

DIGITAL AND ANALOGUE FLECTRONICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination.

Mathematical table/Non-programmable scientific calculator; Graph paper.

The paper consists of EIGHT questions in TWO sections; A and B.

Answer any TWO questions from section A and any THREE questions from

section B in the answer booklet provided.

All questions carry equal marks.

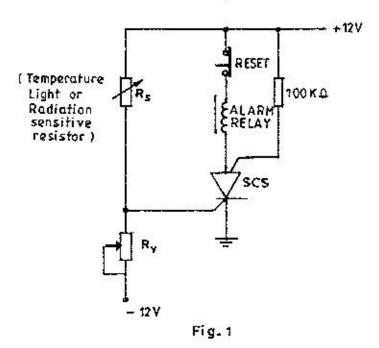
Maximum marks for each part of a question are as indicated.

Candidates should answer questions in English.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2016 The Kenya National Examinations Council


Turn over

SECTION A: ANALOGUE ELECTRONICS II

Answer any TWO questions from this section.

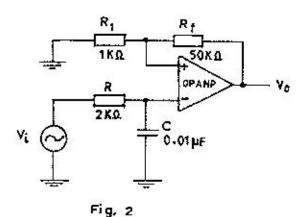
- 1. (a) (i) State **two** advantages of a silicon controlled switch (SCS) over a silicon controlled rectifier (SCR).
 - (ii) Figure 1 shows a circuit diagram of an alarm system employing a silicon controlled switch. Describe its operation.

(6 marks)

- (b) With the aid of a circuit diagram, describe the operation of a discrete-component bistable multivibrator. (8 marks)
- (c) An LED has the following ratings: power output $P_0 = 0.42$ mW, forward current $I_F = 80$ mA and forward voltage $V_F = 1.22$ V. It is connected in series with a current limiting resistor and supplied from a 5V source. The light from the LED is projected onto a flat surface 2.54 cm away and forms a divergence angle of 0.524 radians. Determine the:
 - (i) value of the current limiting resistor;
 - (ii) area illuminated by the LED;
 - (iii) incident irradiance at the flat surface.

(6 marks)

- (a) (i) State the two conditions necessary for oscillations to be sustained in a sinusoidal oscillator.
 - (ii) With the aid of a circuit diagram, describe the operation of a blocking oscillator.
 (10 marks)


2521/203, 2602/202 2601/202, 2603/202 Oct/Nov. 2016

- (b) An amplifier has a gain A = 100, input resistance $Ri = 2K\Omega$ and output resistance $Ro = 40 K\Omega$. Determine the following when it is connected as a voltage-series negative feedback amplifier with a feedback factor $\beta = \frac{1}{10}$:
 - (i) gain;
 - (ii) input resistance;
 - (iii) output resistance;
 - (iv) reduction in distortion;
 - (v) percentage change in gain with feedback if the gain without feedback changes by 20%.

(10 marks)

- 3. (a) (i) Define the following with respect to operational amplifiers:
 - (I) input offset voltage;
 - (II) slew rate;
 - (III) common-mode voltage gain.
 - (ii) Figure 2 shows a circuit diagram of a first-order low-pass filter. Determine the:
 - (I) voltage gain;
 - (II) cutoff frequency.

(7 marks)

- (b) Table 1 shows the data of the gain/frequency characteristic of a two-stage tuned radio frequency amplifier.
 - (i) Plot, on the same axis, the gain/frequency curves for:
 - (I) single stage;
 - (II) two stages.
 - (ii) From the curves, determine the bandwidth of the single stage and the two stages. (7 marks)

Table 1

Frequency	950	960	970	980	990	1000	1010	1020	1030	1040	1050
Gain of 1 stage	1.98	2.45	3.12	4,47	7.07	10	7.07	4.47	3,12	2.45	1.98
Gain of 2 stages	3.92	5.91	9.73	19.98	50	100	50	19.98	9.73	5.91	3.92

(c) Show that the maximum theoretical efficiency of a class-B power amplifier is 78.54%.

(6 marks)

SECTION B: DIGITAL ELECTRONICS

Answer any THREE questions from this section.

- (a) Perform the following number system conversion:
 - (i) 1011101001₂ to decimal;
 - (ii) EB4A₁₆ to decimal

(6 marks)

- (b) Perform the following arithmetic operations in the given bases:
 - (i) $1011_2 \times 101_2$
 - (ii) $1A8_{16} + 67B_{16}$

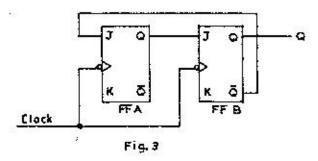
(6 marks)

- (c) (i) Table 2 shows the ASC11 code for alphanumeric characters. Obtain the:
 - (I) code for the letter e;
 - (II) decimal number represented by the code 0111001.

Table 2

	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	P	376	p
1	SOH	DCI	1	1	A	Q	а	q
2	STX	DC2	9	2	B	R	ь	r
3	ETX	DC3	#	3	C	S	c	s
4	EOT	DC4	\$	4	D	T	d	t
5	ENQ	NAK	%	5	Е	U	¢	u
6	ACK	SYN	&	6	F	V	f	v
7	BEL	ETB	t .	7	G	W	g	w
8	BS	CAN	(8	Н	X	h	x
9	HT	EM)	9	Ţ	Y	i	У
A	LF	SUB	•	:	J	Z	j	2
B	VT	ESC	40	-	K	Ţ	k	{
C	FF	FS	50	<	L	١	1	19
D	CR	GS	52	=	M]	m	}
E	SO	RS	20	>	N	٨	n	~
F	SI	US	1	2	0	-	0	DEL

(ii) Add 647₁₀ to 492₁₀ in the 8421 BCD code.


(8 marks)

- 5. (a) (i) Define the following with respect to edge-triggered flip-flops:
 - (I) set-up time;
 - (II) hold-up time.
 - (ii) With the aid of a logic diagram, describe the operation of a master-slave JK flip-flop when the clock is at logic I and makes a transition to logic 0. Assume the circuit is initially reset and the inputs J = K = 1.

(9 marks)

- (b) (i) State two applications of binary counters.
 - (ii) Figure 3 shows a logic diagram of a binary counter. Describe its operation for three clock pulses and draw the timing diagrams.

(8 marks)

(c) Draw the state diagram of a 4-bit Johnsons counter assuming that all the stages are in the '0' state. (3 marks)

6. (a) Using Boolean algebra, simplify the equation

$$\mathbf{F} = \overline{\mathbf{A}} (\mathbf{B} + \overline{\mathbf{C}}) (\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C}) (\overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}})$$
 (5 marks)

- (b) A digital vending machine is to dispense beverage at a time as indicated:
 - Tea and milk
 - Coffee and milk
 - Tea and sugar
 - Coffee and sugar
 - Tea, milk and sugar
 - Coffee, milk and sugar
 - Draw the truth table for the vending machine operation.
 - Obtain the logic expression from the truth table and simplify.
 - (iii) Implement the simplified expression in b(ii).

(10 marks)

(c) Figure 4 shows a logic diagram of a serial adder/subtractor connected to add two 4-bit binary numbers. Outline the sequence of adding the two numbers. (5 marks)

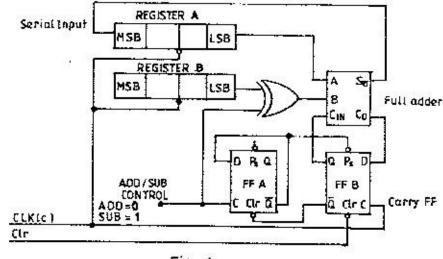


Fig. 4

- 7. (a) (i) Distinguish between random access memory (RAM) and read only memory (ROM).
 - (ii) With the aid of a circuit diagram, explain how a programmable ROM is programmed.

(8 marks)

(b) With the aid of a labelled block diagram, describe the operation of a ramp-type analog-to-digital converter. (8 marks)

(c) Figure 5 shows a circuit diagram of a weighted resistor digital-to-analog converter.

Determine the value of the output voltage, Vo. (4 marks)

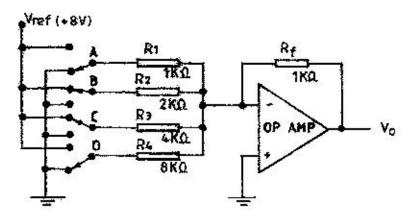
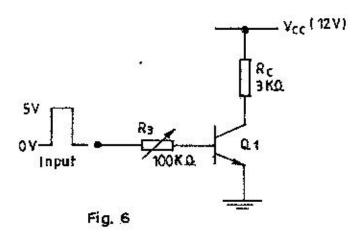



Fig. 5

- 8. (a) (i) State the packaging density of the following ICs:
 - medium scale integration;
 - (II) very large scale integration.
 - (ii) With the aid of a circuit diagram, describe the operation of a two-input CMOS NOR gate.

(10 marks)

(b) Figure 6 shows a circuit diagram of a transistor switch. If $V_{bc} = 0.6V$, $V_{ce(sat)} = 0.2V$ and $\beta = 50$; determine the value of the base resistance at which the transistor will saturate. (10 marks)

THIS IS THE LAST PRINTED PAGE.