THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF TECHNOLOGY IN INFORMATION \& COMMUNICATION TECHNOLOGY

(YR 1 SEM 1)

AMA 4103: CALCULUS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions This paper consist of THREE printed pages

Question One (30 marks)

a) Define the following terms
(i) A Surjective function
(ii) A Bijective function
(4 marks)

$$
g: \Re \rightarrow \Re \quad h(x)=\left\{\begin{array}{cc}
x^{2}-4 x & x \geq 3 \\
x+3 & x<3
\end{array}\right.
$$

b) Let be defined by find $h(5), h(0), h(-3) \quad$ (3 marks)

$$
\frac{d y}{d x}
$$

c) Find for the following functions

$$
y=\sin \left(\left(\sin \left(x^{2}\right)\right)\right)
$$

(i)

$$
y=x^{2} \tan x
$$

(ii)
(2 marks)
d) Evaluate the following limits

$$
x \rightarrow 8 \frac{x^{\operatorname{Lim}}+3 \sqrt{x}}{4-\frac{16}{x}}
$$

(i)

$$
\underset{x \rightarrow-2}{\operatorname{Lim}} \frac{x+2}{x^{2}+x-2}
$$

(ii)

$$
y=\sqrt{x+2}
$$

e) Find the derivative of
by the first principles
f) Evaluate the following integrals

Question Two (20 marks)

a) Define continuity of a function at a point $x=b$

$$
f(x)=\frac{x^{2}+x-6}{x^{2}-4}
$$

b) Define $f(2)$ in a way that extends to be continuous at $x=2$ (6 marks)

$$
y=x^{2}+x
$$

c) Find the equation of both lines through $(2,-3)$ that are tangents to the curve marks)

Question Three (20 marks)

$$
f(x)=2 x+1 \quad g=(x)=\frac{x}{3} . \quad(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

a) Let and Show that (8 marks)

$$
f^{\prime}(0)=3, g(0)=5, g^{\prime}(0)=1
$$

b) Given that $f(0)=8$, , find the derivative of $\mathrm{F}(x)$ at $x=0$ where

$$
F(x)=\frac{f(x)}{g(x)}+3 x^{2}+4 x
$$

c) Find the derivative of the following functions

$$
x^{2}+2 x y+y^{2}=3
$$

(i)

$$
y=e^{\cos 2 x}
$$

(ii)

Question Four (20 marks)

a) Find the value of k for which the following function is continuous
$f(x)= \begin{cases}x^{3}+2 & x \leq 1 \\ k x+5 & x>1\end{cases}$

$$
y=x^{2} \quad y=2 x-x^{2}
$$

b) Find the area of the region between the curves and

$$
\frac{d y}{d x} \quad y=1 n\left(\frac{x \sqrt{+5}}{(x-1)^{3}}\right)
$$

c) Find in the following marks)

$$
y=\sqrt[3]{x} \quad y=\sqrt[3]{126}
$$

d) Use differentials and the function to approximate

Question Five (20 marks)

$$
\frac{d y}{d x}
$$

a) Find for the following
$x=2 t^{4}, y=6 t^{2}-5 t$
b) How fast does the water level drop when a cylindrical tank is drained at the rate of 3 litres/sec?

$$
x \rightarrow 1 \frac{x^{3}-1}{x-1}=3
$$

c) Evaluate
d) Find the dimensions of a rectangular computer lab with perimeter 100 m whose area is as large as possible. Find this maximum area

