2207/302
TELECOMMUNICATION PRINCIPLES
Oct./Nov. 2009

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING AVIONICS (COMMUNICATION AND NAVIGATION OPTION)

TELECOMMUNICATION PRINCIPLES

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet
Mathematical tables/Calculator
Drawing instruments.

Answer any FIVE of the EIGHT questions in this paper.
All questions carry equal marks.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2009 The Kenya National Examinations Council

Turn over

- (a) (i) Define the following as applied to filter networks:
 - passband;
 - II. cutoff frequency.
 - (ii) For the low-pass filter circuit of figure 1 determine the following:
 - cutoff frequency;
 - nominal impedance.

(6 marks)

(b) With the aid of an electrical equivalent circuit diagram, explain how resonance occurs in a piezoelectric crystal hence sketch its response curve.

(6 marks)

- (c) For the astable multivibrator of figure 2, determine from first principles the following:
 - (i) pulse repetition frequency;
 - (ii) mark-to-space ratio of the output waveform.

(8 marks)

- (a) (i) State any one application of relays.
 - (ii) With the aid of a labelled diagram, explain the principle of operation of a drag-cup generator.

(7 marks)

(b) Show that the speed, N, of a d.c. motor is given by expression:

$$N = \frac{V}{k\emptyset}$$
where $V =$ terminal voltage
$$\emptyset = \text{useful flux per pole}$$

$$k = a \text{ constant}$$

(6 marks)

(c) For the silicon controlled rectifier (SCR) trigger circuit of figure 3, determine the range of values of resistor R₁ that will ensure the unijunction transistor (UJT) fires and turns off given the following UJT parameters:

instrinsic stand-off ratio	1)		0.5	
valley voltage	$\mathbf{V}\mathbf{v}$	=	lV	
valley current	Iv	=	10mA	
peak current	lp	=	10µA	
interbase resistance	Rвв	=	5KΩ	
interbase voltage	V_{BB}	=	25 V	
emitter diode drop	V_D	=	0.6V	

(7 marks)

- 3. (a) (i) Define the following as applied to frequency modulation (FM):
 - frequency deviation;
 - II. modulation index.
 - (ii) Compare and contrast any two performance characteristics of Foster-seeley discriminator and ratio detector in FM systems.

(6 marks)

- (b) Sketch the response curve of an FM amplitude limiter and explain its shape.

 (4 marks)
- (c) A 4V, 95 MHz carrier is frequency modulated by a 200Hz audio sine wave. If the maximum deviation is 10kHZ:
 - obtain the expression for the instantaneous voltage of the modulated wave;
 - (ii) determine the power dissipated in a 20Ω resistor by the modulated wave.

(10 marks)

- 4. (a) (i) Draw the h-parameter equivalent circuit for the emitter follower amplifier of figure 4 ignoring hoe and hre.
 - (ii) From the equivalent circuit in a (i) determine the input impedance of the amplifier given that the transistor has hie = $1k\Omega$ and hfe = 50. (8 marks)

- (b) A transistor used in a single-ended transformer coupled class. A amplifier has the data given in table 1. Given the load resistor $R_L = 5\Omega$, transformer turns ratio n = 3.464:1, supply voltage Vec = 20v and the quiescent base bias current $I_{bo} = 10 \text{mA}$:
 - plot the characteristic curves;
 - (ii) draw the de load line;
 - (iii) draw the ac load line;
 - (iv) determine the power dissipated in the load resistor.

(12 marks)

Vce (V)	Ic(A)				
	$I_b = 2mA$	$I_b = 6mA$	$I_b = 10 \text{mA}$	$I_b = 14 \text{mA}$	$I_s = 18 \text{mA}$
1	0.02	0.22	0.40	0.60	0.80
40	0.20	0.40	0.60	0.80	1.00

- (a) (i) State any two areas of application of wide band amplifiers.
 - (ii) With the aid of a circuit diagram, explain unilaterization of tuned radio frequency amplifiers. (8 marks)
 - (b) (i) Derive the expression for the voltage gain with feedback for the feedback amplifier of figure 5 where A = gain without feedback β= feedback factor.
 - (ii) Show that the voltage gain obtained in b (i) depends only on the feedback network assuming the loop gain is far much greater than unity.
 (6 marks)

	(c)	An amplifier has a gain $A = 100$, input resistance $Ri = 2K\Omega$ and output resistance $Ro = 40K\Omega$. If voltage series negative feedback is applied with $\beta = 0.1$, determine the following:			
		(i) gain; (ii) input resistance; (iii) output resistance.	(6 marks)		
6.	(a)	 State with reasons why the amplitude of the modulating signal must not be greater than that of the carrier in amplitude modulation (AM) systems. 	t		
		(ii) Show that amplitude modulation will occur if the carrier and modulating signals are applied in series to a non linear device.	(9 marks)		
	(b)	 State the sampling theorem as applied to pulse modulation. 			
		(ii) Explain the effects of noise on a pulse-width modulated wave and he these effects can be minimised.	now (6 marks)		
	(c)	The tuned circuit of the oscillator in an AM transmitter employs a 75µH co and a 1nF capacitor. If the oscillator is amplitude modulated by audio frequencies upto 2kHz determine the:	il		
		 (i) lower side frequency; (ii) upper side frequency; (iii) bandwidth of the transmitted signal. 	(5 marks)		
7,	(a)	(i) Define the following as applied to propagation of radio waves:			
		I. refraction; II. diffraction.			
		 (ii) With the aid of a wavefront diagram, describe propagation of ground waves. 	(9 marks)		
	(b)	A single-hop transmission between two points 1500km apart employs a maximum usable frequency of 35MHz. If the height of the ionosphere is 350km, determine the critical frequency.	(4 marks)		

A 225m high transmitting antenna operating at 2MHz with antenna current (c) of 6A is 76km away from a receiving antenna. Determine the: height of the receiving antenna; (i) voltage induced in the receiving antenna. (ii) (7 marks) Define the following as applied to transmission lines: (a) (i) I. standing wave ratio; II. propagation constant. Explain the effects of the following transmission line terminations (ii) on a transmitted wave: I. open circuit; II. short circuit. (6 marks) Sketch the curve illustrating the variation of the characteristic impedance (b) of a transmission line with the signal frequency hence explain its shape. (6 marks)

(c) A transmission line having negligible losses has primary constants of L = 0.5 mH/km and $C = 0.12 \mu\text{F/km}$. If the line is operating at 400kHz,

- (i) characteristic impedance;
- (ii) propagation coefficient;

determine the:

- (iii) wavelength of the line;
- (iv) velocity of propagation.

(8 marks)

8.