Name	Adm No.
Stream	

232/1

PHYSICS

Paper 1

March / April - 2018

Time: 2 Hours

IMMACULATE CONCEPTION BOYS HIGH SCHOOL-MUKUYU END TERM ONE EXAMINATION-2018

Kenya Certificate of Secondary Education (K.C.S.E)

PHYSICS FORM THREE

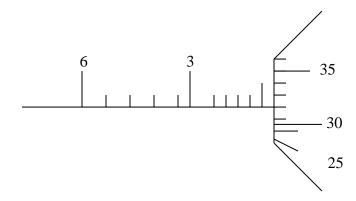
INSTRUCTION TO CANDIDATES

- Write your name and admission number in the spaces provided above.
- This paper consists of TWO sections A and B.
- Answer ALL Questions in sections A and B in the spaces provided.
- ALL workings MUST be clearly shown
- Mathematical tables and electronic calculators may be used.

For Examiner's Use only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATES
			SCORE
A	1-12	25	
В	13	12	
	14	12	
	15	9	
	16	8	
	17	8	
	18	6	
	Total score	80	

This paper consists of 12 printed pages.

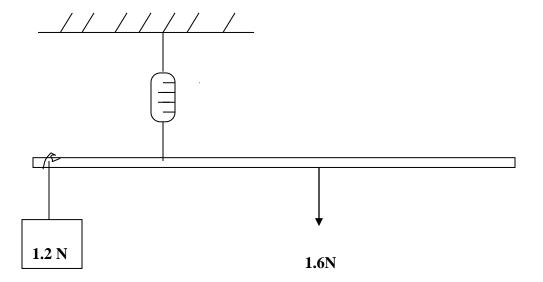

Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

SECTION A (25 MARKS)

Answer all questions in this section in spaces provide

1. The figure below shows a scale of past micrometer screw gauge whose zero error

Is -0.07


What is the actual value of the length being measured (2 marks)

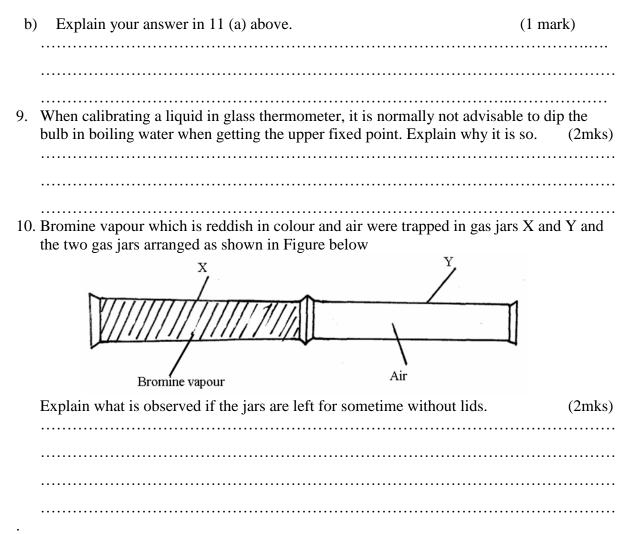
2. A bathroom shower has holes each 2.5 mm² in area. Water flows from a pipe of cross-sectional area of 10cm² at 5m/s to the shower. Determine the speed of the spray.(2 marks)

2. One and of motal is heated in a flame. Very soon the other and heateness hat. Explain this

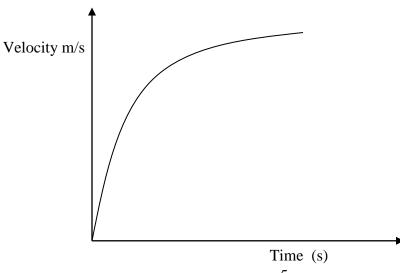
3. One end of metal is heated in a flame. Very soon the other end becomes hot. Explain this observation (1 mark)

4. The figure below shows a uniform metre rule of weight 1.6 N, supported by a spring balance at 3 cm mark. The metre is balanced horizontally by 1.2N weight suspended on the rule.

	(i) Find the point where 1.2N is suspended	(2 marks)
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		•••••
	(ii) The reading on the spring balance	(1 mark)
5.	A stone is thrown vertically upward with an initial velocity 14m/s neglecti	ng air
	resistance find the time before it reaches the ground	(2 marks)
		• • • • • • • • • • • • • • • • • • • •


6.	Give two evidence showing matters is made up of small particles	(2 marks)
7.	a) What is surface tension?	(1 mark)
b)	Figure below shows a funnel dipped into a liquid soap solution.	
	Funnel	
	Soap solution	
	Soap bubble	
	Explain what happens to the soap bubble when the funnel is removed	l. (1 mark)
8.	Figure below shows air flowing through a pipe of non-uniform cross-se pipes A and B are dipped into liquids as shown.	ectional area. Two
	7//////////////////////////////////////	
	Air flow — — — — — — — — — — — — — — — — — — —	
	Fig. 7	

a) Indicate the levels of the liquids in Pipe A and pipe B.


Liquid -

(1 mark)

Liquid

11. The graph in figure below shows the motion of a ball bearing falling though glycerine in a long glass jar.

(a) On the same axes draw the graph of the motion of the same ball falling	g through water (1 mark)
(b) Show all the forces acting on the ball bearing while falling through the	liquid (3 marks)
12. How is velocity different from speed ?	(1 mark)
SECTION B (55 MARKS) Answer all questions in this section in spaces provide	
Answer all questions in this section in spaces provide 13. a) (i) State the principle of moments.	(1mark)
	,
(ii) A uniform metre ruler has a mass of 300g and is pivoted freely at th	e Ocm mark.
Determine the force which should be applied vertically upwards at the 5	5cm mark to
maintain the ruler horizontally.	(3marks)
	•••••
	•••••
	•••••
	•••••

b) Figure 9 below shows a piece of tape pulled through a ticker – timer by a trolley down an inclined plane. The frequency of the ticker-timer is 100Hz.

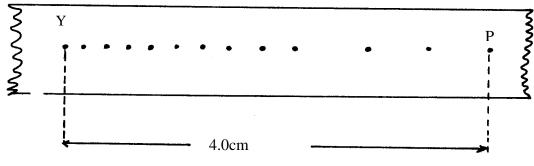


Fig. 9

14.

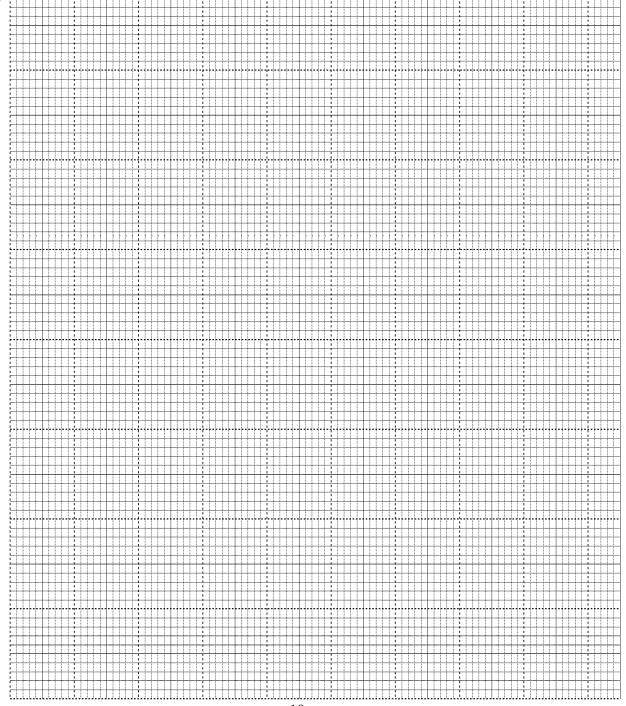
		rig. 9	
(i)	Find the	time between two dots.	(1mark)
(ii)		ne the average velocity of the trolley between Y and P.	, ,
a) 	i)	State the law of conservation of energy.	(1 mark)
••••	ii)	State the energy changes which occur when one switched	es on a torch. (2 marks)
• • • •	•••••		

		iii)	Distinguish between Kinetic energy and potential energy.	
	b)		bullet moving at 350 ms ⁻¹ hits a tree and slows down uniforating a distance of 12 cm. Determine the force exerted on the bullet to bring it to rest.	(3 marks)
		ii)	What assumption did you make in answering (i)?	(1 mark)
15	,	•	olive oil is placed on the surface of water in a large dish. The	e oil spreads out
	to form		ılar film.	- 6 °1 (1
		1) State	e the measurement to be made in order to find the area of the	e nim. (1 mark)
		ii) Wh	at else need to be known for the thickness of the oil film to	be found?
				(1 mark)
	b)	i)	State the law of conservation of linear momentum.	(1 mark)
		•••••		

•••••	••••••		
	ii)	A truck of mass 5000 kg and traveling at 5 ms ⁻¹ colli	-
		a stationary truck. They travel off together at 0.5 ms	⁻¹ . Determine the mass
		of the stationary truck.	(3 marks)
	•••••		
•••••			
	(iii) D	Determine the of impulse on the 5000kg truck	(3 marks)

16. (a) **Define** the term 'work'

(1mk)


.....

(b) The table below shows the value of extensions of a spiral spring when various forces are applied to it.

Force, F (N)	0	1.0	2.0	3.0	4.0	5.0	6.0
Extension, e (cm)	0	0.8	1.5	2.3	3.1	3.8	4.6

(i) Plot a graph of force (y- axis) against the extension

(5mks)

(ii)	Determine the work done in stretching the spring by 4 cm (3mks)				
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
	•••••				
	•••••				
	•••••				
(c)		p can raise 120 kg of water to a height of 10.0 m every minute. Determine wer of the pump.			
	•••••				
	• • • • • • • • • • • • • • • • • • • •				
	•••••				
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
	• • • • • • • • • • • • • • • • • • • •				
	(i) A boo	ly is initially in motion. If no external force acts on the body describe the notion. (1 mark)			
	(ii)	From Newton's law of motion derive the formula for the relationship between force, mass and acceleration. (3 marks)			
	(iii)	A car of mass 800kg is initially moving at 25m/s. Calculate the force needed to bring the car to rest over a distance of 20m (4 marks)			

(b)	(i) Two trolleys of masses 2kg and 1.5kg are mother at 0.25m/s and 0.40m/s respectively. The tracollision. Determine the common velocity with which they remained embedded together.	olleys combine on
(ii) In wh	at directions do the trolleys move after collision?	(1 mark)
18. (i) State B	ernoulli's principle of fluids	(2mks)
water show	Figure 1 e to answer questions (a) and (b) below. n a sections of two submerged body in a swimming pool. The bodies were then fast pull below. a reason which body is easier to pull if they have equal to the submerged body in a reason which body is easier to pull if they have equal to the submerged body in a reason which body is easier to pull if they have equal to the submerged body in a reason which body is easier to pull if they have equal to the submerged body in a reason which body is easier to pull if they have equal to the submerged body in a reason which body is easier to pull if they have equal to the submerged body in a reason which body is easier to pull if they have equal to the submerged body in the sub	ed in the direction
density.	Ta reason which body is easier to pull if they have equal	(2mks)
(b) On the sa	ame diagram show the path followed by each body	(2mks)