

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2017/2018**

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE WITH INFORMATION TECHNOLOGY

MAIN CAMPUS

MMA 405: PARTIAL DIFFERENTIAL EQUATIONS I

Date: 13th March, 2018

Time: 8.30 - 11.30am

INSTRUCTIONS:

Attempt Question ONE and any other TWO.

Show all the necessary workings

Observe further instructions on the answer booklet

[Question One, 30mks]

(a) Solve the following equation

$$\frac{dx}{y - xz} = \frac{dy}{yz + x} = \frac{dz}{x^2 + y^2}$$

[4mks]

(b) Verify that the following equation is integrable and find its primitive

$$(z+z^2)\cos x dx - (z+z^2)dy + (1-z^2)(y-\sin x)dz = 0$$

[5mks]

(c) Form the partial differential equation by eliminating the arbitrary function from

$$z = exp(2x + 3y)f(2x - 3y)$$

[4mks]

(d) Find the integral surface of the equation

$$(y-z)\left\{2xyp + (x^2 - y^2)q\right\} + z(x^2 - y^2) = 0$$

through the curve $x = t^2$, y = 0, $z = t^3$

[7mks]

(e) Show that the equation $p^2 + q^2 = 1 \text{ and } (p^2 + q^2)x = pz \text{ are compatible and hence find its solution.}$

[Question TWO, 20mks]

(a) Form a partial differential equation by eliminating the arbitrary constants from the equation

$$z = (x+a)^2 e^{hy}$$

[7mks]

(b) Find the solution of

$$(x^{2}-1)p + xyq + y^{2}z = x^{2}-1$$

which is zero on the positive y- axis.

[13mks]

[Question Three, 20mks]

(a) Find the characteristics of the equation

$$pq = z$$

and hence, determine the integral surface which passes through the parabola x = 0, $y^2 = z$. 10mks

(b) Using charpit's method, find the complete integral of

$$x^2p^2 + y^2q^2 - 4 = 0$$

[10mks]

[Question Four, 20mks]

Apply Jacobi method to find complete integral of the following equations

(i) $p_1 p_2 p_3 + p_4^3 x_1 x_2 x_3 x_4^3 = 0$

[10mks]

(ii) $p_1p_2p_3 = z^3x_1x_2x_3$

[10mks]

[Question Five, 20mks]

Find the integral surface of the equation

$$x(x + y)p - y(x + y)q - z(x - y) = 0$$

which passes through $x^2 + z^2 = 2x$. y = 1