WIEM 311

CHUKA

UNIVERSITY

TIME: 2 HOURS

11.30 A.M – 1.30 P.M

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN WILDLIFE ENTERPRISE AND MANAGEMENT

WIEM 311: VERTEBRATES POPULATION DYNAMICS

STREAMS:BSC.WIEM Y3S1

DAY/DATE: MONDAY 4/12/2017

INSTRUCTIONS:

- Answer all questions in section A and any two in section B
- Section A carries 30 marks and section B 40 marks

SECTION A(30MARKS)

- 1. Define the following terms.
 - (a) Natality
 - (b) Fecundity
 - (c) Death rate
 - (d) Population ecology
- 2. Describe how the per capita rate of increase (r) influences population growth. [4marks]
- 3. State the advantages and disadvantages of clumped distribution in wildlife populations. [4marks]
- 4. Citing a specific example briefly explain the importance of migration in species persistence. [4marks]
- 5. Describe the application of source sink dynamics in the management of wildlife populations. [4marks]

Page 1 of 2

[4marks]

6.	Briefly explain the four categories of population models .	[4marks]		
7.	Distinguish between the following terms.			
	(a) Fundamental niche and realized niche			
	(b) Contest competition and scramble competition			
	(c) Niche shift and character displacement			

SECTION B (40 MARKS)

8.	Discuss the factors that influence wildlife population growth.	[20marks]			
9.	(a) Given that $r = 0.05$ and N= 1000. Calculate the population size from the initial				
	population up to the 10 th generation.	[12marks]			
	(b) Discuss the underlying assumptions in the logistic growth curve.	[8marks]			
10.	(a) Calculate the blank columns in the life table below.	[10marks]			

<u>x</u>	n <u>x</u>	1 <u>x</u>	d <u>x</u>	q <u>x</u>	e <u>x</u>	L <u>x</u>	Т <u>х</u>
0	128		41			107.5	
1	87		26			74	
2	61		18			52	
3	43		12			37	
4	31		8			27	
5	23		5			20.5	
6	18		4			16	
7	14		3			12.5	
8	11		2			10	
9	9		1			8.5	
10	8		-			-	

(b) Draw a survivorship curve from the above table and name a species likely to show it giving reasons. [5marks]

(c) Discuss the various types of data used in the construction of a life table. [5marks]
