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PAPER B
Instructions to Candidates:

You should have the following for this examination

· Answer Booklet

· Scientific Calculator

This paper consists of FIVE questions and TWO sections A and B.

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown 

This paper consists of THREE printed pages.

SECTION A (COMPULSORY)     

Question ONE  (30 marks)

a. Consider the following second order partial differential equation:-
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(i) Classify it.








(2 marks)

(ii) Reduce to canonical form.






(9 marks)

(iii) Find the general solution in terms of arbitrary functions.



(2 marks)
b. A string of length 
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is stretched between points 
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 axis. At time 
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 it has a shape given by 
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 and it is released from rest. 
i. Give the equation of a vibrating string described here



(2 marks)

ii. State the boundary  and initial conditions associated with this problem

(4 marks)
iii. Find the displacement of the string at any latter time 
[image: image8.wmf]t

 .


(11 marks)
SECTION B
Question TWO   (20 marks)

a. Solve the Laplace’s equation equation 
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 in two dimension which satisfies the conditions 
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by  the method of separation of variables.




(20 marks)
Question THREE   (20 marks)

a. Show that in cylindrical coordinates 
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 , the Laplace’s equation  
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 takes the 
form 
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(10 marks)
b. Classify and transform to canonical form 
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(10 marks)
Question FOUR   (20 marks)

a. Obtain the general solution for  
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(8 marks)
b. Solve by the method of characteristics 
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(12 marks)
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Question FIVE   (20 marks
a. Find the Fourier series expansion of 
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(8 marks)
b. Solve Laplace’s equation inside a circle of radius 
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(12 marks)
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