

Murang'a University College
(A Constituent College of Jomo Kenyatta University of Agriculture and Technology) University Examination
School of Pure and Applied Sciences
Supplementary/Special Examination for the degree of; Bachelor of Science in Mathematics \& Computer Science, Bachelor of Science in Mathematics \& Economics AMS 2101/SMA 2103 PROBABILITY \& STATISTICS I.

Question One (30 Marks)

(a) Find the constant c such that the function

$$
f(x)=\left\{\begin{array}{cl}
c x^{2} & \text { for } 0<x<3 \\
0 & \text { otherwise }
\end{array}\right.
$$

is a density function.
(5 Marks)
(b) Find the mean for a random variable X defined by

$$
X=\left\{\begin{array}{cll}
2 & \text { probability } & 1 / 3 \\
-1 & \text { probability } & 2 / 3
\end{array}\right.
$$

(c) Suppose that a game is to be played with a single die assumed fair. In this game a player wins $\$ 20$ if a 2 turns up, $\$ 40$ if a 4 turns up; loses $\$ 30$ if a 6 turns up; while the player neither wins nor loses if any other face turns up. Find the expected sum of money to be won.
(d) Consider the random variable X with probabilities

x	0	1	2	3	4	5
$P[X=x]$	0.05	0.10	0.20	0.40	0.15	0.10

Compute the variance of X.
(e) Derive an expression for $\widehat{\beta}_{0}$ from the linear model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i},
$$

where the error terms $\epsilon_{i^{\prime} s} \sim N\left(0, \sigma^{2}\right)$.
(5 Marks)
(f) Define the following terms:
(i) Statistic.
(ii) Parameter.
(1 Mark)
(g) In an attempt to determine the relationship between the daily midday temperature (measured in degrees Celsius) and the number of defective parts produced during that day, a company recorded the data presented in the table below. For this data set, x_{i} represents the temperature in degrees Celsius and y_{i} the number of defective parts produced on day i.

Day	Temperature	Number of Defects
1	24.2	25
2	22.7	31
3	30.5	36
4	28.6	33
5	25.5	19
6	32.0	24
7	28.6	27
8	26.5	25
9	25.3	16
10	26.0	14
11	24.4	22
12	24.8	23
13	20.6	20
14	25.1	25
15	21.4	25
16	23.7	23
17	23.9	27
18	25.2	30
19	27.4	33
20	28.3	32
21	28.8	35
22	26.6	24

Find the sample correlation coefficient for the data presented in the table above.
(5 Marks)

Question Two (20 Marks)

a) (i) Prove that $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0$.
(4 Marks)
(ii) When fitting the simple linear regression model $Y=\beta_{0}+\beta_{1} X+\varepsilon$ to a set of data using the least squares method, prove that the sum of the ordinary least squares residuals is zero. (6 Marks)
(b) Using the data in the table below

Row	Minutes	Units	Row	Minutes	Units
1	23	1	8	97	6
2	29	2	9	109	7
3	49	3	10	119	8
4	64	4	11	149	9
5	74	4	12	145	9
6	87	5	13	154	10
7	96	6	14	166	10

compute $\operatorname{Cor}(Y, X)$.
(10 Marks)

Question Three (20 Marks)

(a) Let Y and X denote the labour force participation rate of women in 1972 and 1968, respectively, in each of 19 cities in the United States. The regression output for this data set is shown in the table below. It was also found that $\mathrm{SSR}=0.0358$ and $\mathrm{SSE}=0.0544$. Suppose that the model $Y=\beta_{O}+\beta_{1} X+\varepsilon$ satisfies the usual regression assumptions.

Variable	Coefficient
Constant	0.203311
X	0.656040
n	19

(i) Compute $\operatorname{Var}(Y)$.
(4 Marks)
(ii) Suppose that the participation rate of women in 1968 in a given city is 45%. What is the estimated participation rate of women in 1972 for the same city?
(iii) Compute R^{2}, where $R=\operatorname{Cor}(Y, X)$.
(b) The following are the activity values (micromoles per minute per gram of tissue) of a certain enzyme measured in the normal gastric tissue of 35 patients with gastric carcinoma:

0.360	1.189	0.614	0.788	0.273	2.464	0.571
1.827	0.537	0.374	0.449	0.262	0.448	0.971
0.372	0.898	0.411	0.348	1.925	0.550	0.622
0.610	0.319	0.406	0.413	0.767	0.385	0.674
0.521	0.603	0.533	0.662	1.177	0.307	1.499

Calculate the
(i) mean \bar{x}
(ii) variance s^{2}, and
(4 Marks)
(iii) standard deviation s.
(3 Marks)

Question Four (20 Marks)

(a) (i) The probability is 0.038 that a person reached on a "cold call" by a telemarketer will make a purchase. If the telemarketer calls 40 people, what is the probability that at least one sale will result?
(5 Marks)
(ii) A random variable X has a density function given by

$$
f(x)=\left\{\begin{array}{cl}
2 e^{-2 x} & \text { for } \quad x \geq 0 \\
0 & x<0
\end{array}\right.
$$

Find the moment generating function about the origin.
(5 Marks)
(b) Let X be a random variable with pdf $f(x)=k x^{2}$ where $0 \leq x \leq 1$.
(i) Find the value of the constant k.
(3 Marks)
(ii) Find $E(X)$ and $\operatorname{Var}(X)$.
(7 Marks)

Question Five
 (20 Marks)

(a) Given the random variable X whose probability density function is given by

$$
f(x)=\left\{\begin{array}{cl}
e^{-x} & \text { for } \quad x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

find the coefficient of skewness for this distribution.
(b) Let X be a random variable that can take on the values 2,1 , and 3 with respective probabilities $1 / 3,1 / 6$, and $1 / 2$. Find
(i) the mean,
(ii) the third moment about the mean.

