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TIME: 2 HOURS
INSTRUCTIONS:   
ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS 
Question One (30 Marks)
a)
(i)
State Rolle�s theorem






(2 Marks)


(ii)
Use Rolle�s theorem to find the value of C for the function 



f (x) = x2 – 11x + 24 in the interval [3 ≤ x ≤ 8]


(3 Marks)

b)
Determine the limit of the function:
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(4 Marks)
c)
Find the Taylor’s series generated by f (x) = e2x at x = 0.


(4 Marks)

d)
(i)
Define an infinite series





(1 Mark)


(ii)
Examine the nature of the series 1 + 2 + 3 + 4 + -------- + n + ------ ∞










(3 Marks)
e)
Express 
[image: image3.wmf]dt

dw

using chain rule as a function of t and evaluate it at t = 0 given that 

w = x2 + y2, 
x = cos t, 
y = sin t.




(5 Marks)

f)
Evaluate the double integral 
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Where R s the region bounded by the lines 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

(4 Marks)

g)
Given that u = 3x2y + 8xy3 + 10x2y2, find 
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(4 Marks)
Question Two (20 Marks) 
a)
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where R: 0 ≤ x ≤ 1, 1 ≤ y ≤ 2, 2 ≤ z ≤ 3

(5 Marks)

b)
Change the order of integration in 
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and hence evaluate the same.









(5 Marks)

c)
(i)
State the two conditions necessary and sufficient for f (x, y) to attain an 

extreme value.







(2 Marks)


(ii) 
Find the maximum or the minimum values of the function xy (6 � x � y)











(8 Marks)



Question Three (20 Marks) 
a)
(i)
Determine the reduction formula for the integral I = 
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(5 Marks)


(ii)
Use the reduction formula established above to find 
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(3 Marks)
b)
(i)
Derive the Maclaurin�s theorem given the power series for f (x) to be 

f (x) = a0 + a1x
 + a2x2 + a3x3 + a4x4 + --------- where a0, a1, a2, --------- are constants.







(8 Marks)

(ii)
Find the Maclaurin�s series generated by f (x) = cos x.
 
(4 Marks)

Question Four (20 Marks)
a)
(i)
State Cauchy�s fundamental test for divergence.


(2 Marks)

(ii)
Test for convergence of the series




(3 Marks)
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b)
Find the value of C that satisfies the equation C that satisfies the equation 
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in the conclusion of the mean value theorem for the following functions:

(i) f (x) = x2 � 2x + 1, [0, 1]





(3 Marks)
(ii) f (x) = x + 
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[ ½ , 2]






(3 Marks)

c)
By changing to polar coordinates evaluate 
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over the positive quadrant of the circle x2 + y2 = a2.





(6 Marks)

d)
Evaluate  
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(3 Marks)
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