233/2 CHEMISTRY PAPER 2 (THEORY) JULY/AUGUST - 2015 TIME: 2 HOURS

TRANS-NZOIA COUNTY JOINT EVALUATION EXAM – 2015

Kenya Certificate of Secondary Education (K.C.S.E)

233/2 CHEMISTRY PAPER 2 (THEORY) JULY/AUGUST - 2015 TIME: 2 HOURS

INSTRUCTIONS TO THE CANDIDATES

- Write your *name* and *index number* in the spaces provided above.
- *Sign* and write the *date* of examination in the spaces provided.
- Answer *all* questions in the spaces provided.
- KNEC mathematical table and silent non-programmable electronic calculators may be used.
- All workings *must* be clearly shown where necessary.
- Candidates should answer the questions in *English*.

For Examiner's Use Only:-

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1	12	
2	10	
3	13	
4	11	
5	11	
6	11	
7	12	
Total	80	

This paper consists of 8 printed pages.

Candidates should check the question paper to ascertain that all pages are printed as indicated. And that no questions are missing. 1. (a) The information below relates to element N, P, Q, R and S. Study it and use it to answer the questions that follow. The letters are not the actual symbols of the elements.

Element	Atomic radius (mm)	Ionic radius (mm)	Formula of oxide	Melting point of oxide
				storing point of online
N	0.364	0.421	N ₂ O	-119
Р	0.830	0.711	PO ₂	837
Q	0.592	0.485	Q_2O_3	1466
R	0.381	0.446	R_2O_5	242
S	0.762	0.676	SO	1054

(i) Name the elements that are metal. Give a reason.

(2 mks)

(1 mk)

(2 mks)

-
- (ii) Compare the melting points of the oxides of S and R in terms of structure and bonding. (2 mks)
- (iii) Name the pair of elements that would react most vigorously with each other? Explain. (2 mks)

.....

- (b) The table below has information about chlorides of elements in period 3 of the periodic table:
 - sodium to sulphur.

Chloride	NaCl	MgCl ₂	AlCl ₃	SiCl ₄	PCl ₅
Melting point (⁰ C)	801	712	Sublimes at 183	-70	-80

- What are the possible P^H values of the solutions formed when the following chlorides are dissolved in water? Explain.
 MgCl₂ (1 mk)
 - AlCl₃
 -
- (c) The molecular formula of Aluminium chloride is Al₂Cl₆. Draw the structural (not dot and cross diagram) of Aluminium chloride indicating clearly the different types of bonds present.
 (2 mks)

(d) Using dot (•) and cross (x), draw a diagram to show bonding in sodium chloride.
 (Na = 11, Cl = 17)

2. Sulphuric (IV) acid can be prepared using hydrogen sulphide as shown in flow chart below. Study it and answer the questions that follow.

(ii) Iron (III) chloride forms an aqueous solution.	(1 mk)
(iii) Fresh crystals of sodium carbonate decahydrate become covered with a white po solution carbonate monohydrate.	owder of (1 mk)
(c) From the redox below:	
$Cr_2O^{2-}_{7(aq)} + 3SO^{2-}_{3(aq)} + 8H^+_{(aq)} \longrightarrow 2C_r^{3+}_{(aq)} + 3SO_4^{2-}_{(aq)} + 4H_2O_{(1)}$)
(i) Give the reduction half equation.	(1 mk)
(ii) State and explain the observation made when a solution of sodium hydroxide is a	dded to the
equilibrium mixture above.	(2 mks)
(d) A certain hydrate salt has the following composition by mass. Iron 20.2%, sulphu	ır 11.5%, wat
45.5% and the rest oxygen. Its relative formula mass is 278.	
45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. ($Fe=56$, $S=52$, $O=16$, $H=1$) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume	(3 mks)
 45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. (<i>Fe= 56, S = 52, O = 16, H = 1</i>) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. 	(3 mks) made to 250 (2 mk)
 45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. (<i>Fe</i>= 56, <i>S</i> = 52, <i>O</i> = 16, <i>H</i> = 1) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. 	(3 mks) made to 250 ((2 mk)
 45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. (<i>Fe= 56, S = 52, O = 16, H = 1</i>) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. 	(3 mks) made to 250 c (2 mk)
 45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. (<i>Fe= 56, S = 52, O = 16, H = 1</i>) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. 	(3 mks) made to 250 c (2 mk)
 45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. (<i>Fe= 56, S = 52, O = 16, H = 1</i>) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. 	(3 mks) made to 250 c (2 mk)
45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. ($Fe=56$, $S=52$, $O=16$, $H=1$) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. Bulb x y	(3 mks) made to 250 c (2 mk)
45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. ($Fe=56$, $S=52$, $O=16$, $H=1$) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. Bulb x f F E E	(3 mks) made to 250 c (2 mk)
45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. ($Fe=56$, $S=52$, $O=16$, $H=1$) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. Bulb K F E E F	(3 mks) made to 250 c (2 mk)
45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. ($Fe = 56$, $S = 52$, $O = 16$, $H = 1$) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. Bulb \mathbf{x} \mathbf{F} \mathbf{E} \mathbf{F} F	(3 mks) made to 250 c (2 mk)
45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. (<i>Fe= 56</i> , <i>S = 52</i> , <i>O = 16</i> , <i>H = 1</i>) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. Bulb K F	(3 mks) made to 250 c (2 mk)
45.5% and the rest oxygen. Its relative formula mass is 278. (i) Determine the formula of the hydrated salt. ($Fe=56$, $S=52$, $O=16$, $H=1$) (ii) 6.95 g of the hydrated salt were dissolved in distilled water and the total volume of solution. Calculate the concentration of the salt solution. You are provided with the diagram below. Use it to answer the questions below. Bulb K F F F F F F F (a) Identify electrodes E , F	(3 mks) made to 250 c (2 mk)

	(1 IIIK)
(ii) Explain your answer in b (i)	(1 mk)
c) (i) State the observation made on the bulb when Lead (II) bromide is heated and	the electric
current was switched on.	(1 mk)
(ii) Explain your answer in c (i).	(1 mk)
d) (1) Arrange the following amons in the order of increasing ease of discharge duri NO_3^{-1} , OH ⁻ , $SO_4^{2^-}$, I ⁻ , Cl ⁻ , Br ⁻	ng electrolysis (2 mks)
 (ii) Dilute Copper (II) sulphate solution was electrolysed using copper electrodes equation to show the reaction occurring at the: Anode: 	s. Write an Ion (2 mks)
Cathode:	
e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide	e for 40 minute
 (e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide Calculate the volume of bromine vapour that would be produced. (Faraday's constant = 96,500 coulombs, molar volumes = 24.0dm³) 	e for 40 minute (3 mks)
 (e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide Calculate the volume of bromine vapour that would be produced. (<i>Faraday's constant = 96,500 coulombs, molar volumes = 24.0dm³</i>) 	e for 40 minute (3 mks)
(e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide Calculate the volume of bromine vapour that would be produced. (<i>Faraday's constant = 96,500 coulombs, molar volumes = 24.0dm³</i>) Study the flow chart below and use it answer the questions below.	e for 40 minute (3 mks)
(e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide Calculate the volume of bromine vapour that would be produced. (<i>Faraday's constant = 96,500 coulombs, molar volumes = 24.0dm³</i>) Study the flow chart below and use it answer the questions below. Ore Ore WATER Ore WATER OIL	e for 40 minute (3 mks)
e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide Calculate the volume of bromine vapour that would be produced. (Faraday's constant = 96,500 coulombs, molar volumes = 24.0dm ³) 	e for 40 minute (3 mks)
e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide Calculate the volume of bromine vapour that would be produced. (Faraday's constant = 96,500 coulombs, molar volumes = 24.0dm ³) 	e for 40 minute (3 mks) AIR
e) An electric current of 2.5 amperes was passed through molten Lead (II) Bromide Calculate the volume of bromine vapour that would be produced. (Faraday's constant = 96,500 coulombs, molar volumes = 24.0dm ³) 	e for 40 minute (3 mks) AIR) OXIDE CABLES

(b) Explain why the ore is crushed.	(1 mk)
(c) Which process occurs in mixing chamber?	(1 mk)
(d) Explain the use of: I. Water	(3 mks)
II. Oil	
III. Compressed air	
(e) Write down an equation for the formation of slag.	(1 mk)
(f) Identify the cations present where the metal is being purified.	(1 mk)
(g) (i) Draw a diagram of a set-up used for electrolytic purification of copper.	(2 mks)

(ii) A green rocky material is suspected to be malachite, $CuCO_3$. $Cu(OH)_2$.				
Describe how the presence of copper can be confirmed.	(2 mks)			
(a) State Hegg'g law	(1 mk)			
(a) State ness s law.	(1 IIIK)			
(b) Distinguish between hydration energy and lattice energy.	(1 mk)			

(c) An experiment was done using magnesium ribbon and dilute hydrochloric acid of different concentrations. The time needed to produce 25 cm^3 of the gas for every experiment was recorded in the table below.

Conc. Of HCl (mol/Litre)	2.0	1.75	1.50	1.25	1.00	0.75	0.50	0.25
Time in Sec. (s)	8.8	10.0	11.7	13.5	17.5	22.7	35.7	70.00
1/t (s ⁻¹)								

(i) Complete the table above.

(2 mks)

- (iii) Determine from your graph the concentration needed to produce 25 cm³ of hydrogen gas, when time is 15 seconds.
 (1 mk)
-
- (d) The diagram below shows an energy level diagram for the formation of magnesium chloride. Study it and answer the questions that follow.

