

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

SECOND YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE WITH INFORMATION **TECHNOLOGY**

MAIN CAMPUS

MMA 221: INTRODUCTION TO NUMBER THEORY

Date: 8th December, 2016

Time: 8,30 - 11.30 am

INSTRUCTIONS:

· Answer question ONE and any other TWO questions.

MASENO UNIVERSITY

ISO 9001:2008 CERTIFIED

QUESTION ONE (Compulsory)

[30 Marks]

- (a) Differentiate between a multiplicative function and a completely multiplicative function.
 [2 Marks]
- (b) Let a, b, c, and d be integers such that $a \equiv b \mod m$ and $c \equiv d \mod m$. Show that $ac \equiv bd \mod m$. [3 Marks]
- (c) Use Chinese Remainder Theorem to solve the following system of linear congruences:

$$7x + 2 \equiv 1 \mod 3$$
$$3x \equiv 4 \mod 10$$

 $8x \equiv 5 \mod 7$

[5 Marks]

(d) Calculate the following:

(i) Euler's totient function, $\phi(72)$.

[2 Marks]

(ii) Number of divisors, d(180).

[2 Marks]

(iii) Möbius function, $\mu(30)$.

[2 Marks]

- (e) State Fermat's Little Theorem and hence use it to find 7222 mod 11. [4 Marks]
- (f) Find the solutions of the quadratic congruence $3x^2 + x + 1 \equiv 0 \mod 5$. [3 Marks]
- (g) Let S₂ be the set consisting of the sums of two squares. Show that S₂ is closed under multiplication. [3 Marks]
- (h) Obtain a continued fraction representation of 2016/1963.

[4 Marks]

QUESTION TWO

[20 Marks]

(a) State the law of quadratic reciprocity.

[2 Marks]

(b) Use quadratic reciprocity to show that the quadratic congruence $x^2 \equiv 271 \mod 23$ has a solution and hence solve it.

[6 Marks]

- (c) Let a, b be positive integers satisfying $a^j = b^k$ for positive and relatively prime integers j, k. Show that $a = r^k$ and $b = r^j$ for some positive integer r. [4 Marks]
- (d) Prove that if f(n) is a multiplicative function, then

$$g(n) = \sum_{k|n} f(k)$$
 and $h(n) = \sum_{k^2|n} f(k^2)$

are also multiplicative.

[8 Marks]

QUESTION THREE

[20 Marks]

- (a) If $p \equiv 3 \mod 4$ then p cannot be written as a sum of two squares. [3 Marks]
- (b) Show that if two integers a and b can be represented as a sum of two squares, then ab can be written as a sum of two squares as well. [4 Marks]
- (c) Show that if a positive integer a is represented in decimal digits, i.e.,

$$a = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_2 10^2 + a_1 10 + a_0$$

then a is divisible by

- (i) 2 if a_0 is divisible by 2. [2 Marks]
- (ii) 3 if the sum of its digits is divisible by 3. [2 Marks]
- (iii) 11 if the alternating sum of its digits is divisible by 11. [2 Marks]
- (d) Let a, b, x and y be integers. Prove that
 - (i) if x|ay, x|by and gcd(a, b) = 1 then x|y. [3 Marks]
 - (ii) $gcd(a,b) \cdot lcm(a,b) = ab$. [4 Marks]

QUESTION FOUR

[20 Marks]

(a) Show that there are no positive integers x, y and z such that $x^4 + y^4 = z^2$.

[8 Marks]

- (b) Use continued fractions to:
 - (i) solve the Diophantine equation 214x 35y = 1. [5 Marks]
 - (ii) find the greatest common divisor of 214 and 35. [3 Marks]
- (c) Prove that there are infinitely many primes. [4 Marks]

QUESTION FIVE

[20 Marks]

- (a) Show that if $a_1, a_2, ..., a_m$ is a complete residue system modulo m and gcd(k, m) = 1, then $ka_1, ka_2, ..., ka_m$ is also such a system. [4 Marks]
- (b) (i) Define a Pell equation.

[1 Mark]

(ii) Solve the following Diophantine equation: $2X^2 + Y^2 = 688$.

[5 Marks]

- (c) Compute the following:
 - (i) $\left(\frac{83}{103}\right)$, where $\left(\frac{a}{b}\right)$ is a Legendre symbol. Give a reason for each step.

[7 Marks]

(ii) $\sigma_2(144)$, where $\sigma_k(n)$ is the sum of k-th powers of the divisors of n.[3 Marks]