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QUESTION ONE {Compulsory) [30 Marks]
(8) Define the following terms as used in analysis: [E.Hr_nks]

{i} Monotonic sequence
(ify Convergent sequence
(b} Let f{z} be a real-valued function defined on an interval / = R,

(i) What is meant by “f is uniformly continwous on ™7 (2 mks]
(ii) Tf f(x) = @ +sinz, show that f iz uniformly continuous on I. [3 mks]
{c) State the cardinalities of the following sets: 2 mis]

{i} the empty set @

(i) a singleton set
{iii} the set of all natural numbers N
fiv) the set of all real numbers B

{d} Define a Cauchy sequence and determine whether the sequence (2,) where 7, = 14347 +

% + -+ + 5 is & Cauchy sequence. [4 mis]
(e} If 5, =, is & series of positive terms, show that the sequence of its partial sums (5;) is
monotonically Increasing. [3 mks}
(f) Find the liminf and limsup of the sequence {,) where (3 mbe]

g, = [307E G nisodd,
(=)' if niseven.

{g) Using the transitive property of a metric d, ¢how that on any nonempty set X, & metric d ig
always nonnegative. : [2 mks]
(h} Let a function f be given by

P 1 when = is rational,
T 10 when gz is irrational.

Show that f is not Riemann integrable an any interval [a, b]. [4 mks}

(i) Determine the convergence/ divergence of the series (3 k)

g e TE RTE R

(i) Let |A| and |B| denote the cardinslities of the sets 4 and B respectively. Give an equivalent
statement to the statement j4| = |B}. [2 mics]



QUESTION TWO [20 Marks]

(a} Distinguish between the following terms and give examples of each: [8 miks]

(i} Abselute and Cenditional convergences
(ii) Countable and Uncountable sets

(b) Shew that the function f(z) = £ is continuous but not uniformly contimious on the interval
(0,1]. [7 maks)

(¢) Use D'Alembert’s Ratio test to determine the convergence or divergence of the series

=2 w
Eﬂg -sin(y)

[5 moks]

QUESTION THREE [20 Marks]
(a) Prove that every convergent sequence (2,) is bounded. With the help of an example, show
that the converse is not necessarily true. [8 mks]

{b) Investigate the convergence or divergence of the series below: [8 mks]

=1
Y s
n=1

(¢} Let (X,d) be a metric space. Show that every open sphere (ball} in (X,d) is on open set.

{4 mis)
QUESTION FOUR (20 Marks]
{a) Show that the funetion f{z) = 3z¢® + 2 is Riemann integrable on the interval [0, 2], and that
I? Ha)dz =12, [8 miks]
(b} Let P* be a refinement of & partition P of an interval [a, b, Show that for a bounded function
fou [a, 8],

U(p f) 2 0P, f),

where [7{P, f) and U[P*, f) are the upper Riemann surs with respect to the paxtitions P
and P respectively. |7 mks]

(¢) Show that the intersection of any two apen sets in & metric space is also an open set.[3 mks)



QUESTION FIVE

(a) Show that the set B of all real numbers is uncountable,

(b} Using the definition of a limit, show that
2n

Ao drp— 1

s
=3

(¢) Evaluate the following limit:

lim 2 44
n—oo | On — 2

[20 Marks]
7 vk
13 k]

3 mks]

(d) Let Ca,b) be the space of continuous realvalued functions on the interval {a, b). Define

d: Cla,b) x Cla,b) —» R by

d(f, g} = sup{|f{z} — ¢(z)| : = € (a,8)}.

Show that 4 defines a metric on C(e, ).

END
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