

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2016/2017**

FOURTH YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION WITH INFORMATION TECHNOLOGY

MAIN CAMPUS

MMA 401: RING THEORY

Date: 30th November, 2016

Time: 8.30 - 11.30 am

INSTRUCTIONS:

- Answer question ONE and any other TWO questions.
- Observe further instructions on the answer booklet.

ISO 9001:2008 CERTIFIED

MASENO UNIVERSITY

Compusory	Question 1.	(Compulsory)
-----------	-------------	---------------

[30 Marks]

- (a) Define and give an example of:
 - (i) An integral domain.
 - (ii) A commutative ring.
 - (iii) A zero divisor.

[6Marks]

- (b)(i) Prove the uniqueness of the identity element in a ring R.
 - (ii) Let x, y and z be elements of an integral domain with $x \neq 0$ and xy = xz. Show that y = z.

[5Marks]

- (c) Give an example of;
 - (i) A commutative ring with unity but has zero divisors.
 - (ii) A non commutative ring with unity.
 - (iii)A finite field.

[6Marks]

- (d)(i) Define an ideal of a ring R.
 - (ii) Let R be a commutative ring with unity. Show that for any fixed a in R, the set $(a) = \{ar | r \in R\}$ is an ideal of R. [8Marks]
- (e)(i) Define the term irreducible polynomial over a field F.
 - (ii) Determine whether or not the polynomial $g(x) = x^2 + x + 2$ is irreducible over \mathbb{Z}_5 and over \mathbb{Z}_7 . [5Marks]

Question 2.

- (a) Define
 - (i) principal ideal.
 - (ii) maximal ideal.

[4 Marks]

(b) (i) Show that the set $R = \{\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} | a, b, c \in \mathbb{Z} \}$ is a ring with respect to matrix addition and multiplication.

(ii) Prove that the sets $I = \left\{ \begin{bmatrix} p & q \\ 0 & 0 \end{bmatrix} \middle| p, q \in \mathbb{Z} \right\}$ is an ideal of R.

[16 Marks]

Question 3.

(a) For any $a \in \mathbb{Z}$, let $[a]_6$ denote [a] in \mathbb{Z}_6 and $[a]_2$ denote [a] in \mathbb{Z}_2 .

(i) Prove that the mapping $\Phi: \mathbb{Z}_6 \to \mathbb{Z}_2$ defined by $\Phi([a]_6) = [a]_2$ is a homomorphism.

(ii) Find the kernel of Φ.

[4 Marks]

(b) Given that $\phi: R \to \tilde{R}$ is a homomorphism. Show that,

(i) $ker\phi = \{x \in R: \phi(x) = 0\}$ is an ideal of R.

(ii) $ker\phi = \{0\}$ iff ϕ is injective.

[7 Marks]

(c) Consider the ring Z of integers. Prove that every ideal of Z is of the form

$$(a) = \{ar \mid r \in \mathbb{Z} \text{ and } a \text{ is fixed in } \mathbb{Z}\}$$

[9Marks]

Question 4

(a) Give the definition of;

(i) a subring

(ii) ring homomorphism.

[4 Marks]

(b) Let φ be a homomorphism from the ring R to a ring \overline{R} . Let R_1 and \overline{R}_1 be subrings of R and R_1 respectively. Prove that

(i) $\varphi(R_1)$ is a subring of \overline{R} .

(ii) $\varphi^{-1}(\bar{R}_1)$ is a subring of R.

16 [·12 Marks]

Question 5.

- (a) Definition of a field and hence prove that every field is an integral domain.

 [8 Marks]
- (b) Let R be an integral domain. If f(x) and g(x) are non zero elements of R[x], the set of all polynomials over R. Show that $\deg(f(x),g(x)) = \deg(f(x)) + \deg(g(x))$. [5 marks]
- (c) A polynomial f(x) is known to be of degree one or two over F. Prove that f(x) is reducible over F if and only if it has at least one zero in F.

[7 Marks]