

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2016/2017**

THIRD YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN APPLIED STATISTICS, MATHEMATICAL SCIENCE AND MATHEMATICS AND BUSINESS STUDIES WITH INFORMATION TECHNOLOGY

MAIN CAMPUS

MAS 303/MMA 314: THEORY OF ESTIMATION

Date: 29th November, 2016

Time: 8.30 - 11.30 am

INSTRUCTIONS:

- Answer question ONE and any other TWO questions.
- Start each question on a fresh page.
- Indicate question numbers clearly at the top of each page.
- Scientific calculators may be used.
- Statistical tables have been appended

ISO 9001:2008 CERTIFIED

QUESTION 1

5	
(a) Clearly distinguish between	
(i) population and sample	[2 mks]
(ii) parameter and statistic	[2 mks]
(b) When is an estimator said to be	
(i) consistent	[1 mk]
(ii) unbiased	[1 mk]
(iii) sufficient	[1 mk]
(iv) efficient	[1 mk]
(c) Explain what's meant by the term sampling	[1 mk]
(d) Given a random sample of size n from a uniform distribution interval ($\alpha \pm \theta \sqrt{3}$), find by the method of moments the emission (i) α (i) θ	
(e) $f(x;\theta) = \frac{1}{\theta} e^{\frac{-1}{\theta}}$, $x > 0$, $\theta > 0$	
=0 elsewhere	
Determine the ML estimator for $ heta$	[5 mks]
(f) Show that if T is an unbiased estimator for a parameter	θ ,
(i) a T + b is an unbiased estimator for a θ + b	[2 mks]
(ii) T^2 is not an unbiased estimator for θ^2	[3 mks]

where a and b are known constants

[3 mks]

(g) Let x_1, x_2, \ldots, x_n be a random sample from a population with pdf $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$. Show that $t_i = \prod_{t=1}^n x_t$ is a sufficient [5 mks] estimator for θ

DUESTION 2

- (a) x is a binomial random variable with parameters n and p. Given a random sample of n observations of x, compute the method of moments estimators for
 - (i) p when n is known

(ii) n, p when both are unknown

[12 mks]

(b) (x_1, x_2, x_3) is a random sample of size 3 from a population with mean value μ and variance σ^2 , T_1 , T_2 , T_3 are the estimators used to estimate 18 mksl mean value μ where

$$T_1 = x_1 + x_2 - x_3$$

$$T_2 = 2 x_1 + 3x_3 - 4 x_2$$

$$T_3 = (\lambda x_1 + x_2 + x_3)/3$$

- (i) Are T₁ and T₂ unbiased estimators
- (ii) Find the value of λ , such that T_3 is an unbiased estimator for μ
- (iii) With this value of λ , is T_3 a consistent estimator?
- (iv) Which is the best estimator and why?

QUESTION 3

- (a) State as precisely as possible the properties of maximum likelihood [2 mks]
- (b) Obtain the MLE's of α and β for a random sample from the exponential population

$$f(x; \alpha, \beta) = y_0 e^{-\beta(x-\alpha)}, \alpha \le x < \infty, \beta > 0$$

yo being a constant

[12 mks]

(c) For the density function given by

 $f(x;\alpha) = \frac{2}{\alpha^2} (\alpha - x), 0 < x < \alpha$ =0 elsewhere and for a sample of unit size, (i) find the MLE for α . (ii) show that the estimator is biased

[3 mks]

[3 mks]

[1 mk]

QUESTION 4

- (a) Prove that a minimum variance unbiased estimator (MVUE) is unique in the sense that if T_1 and T_2 are MVU estimators for $Y(\theta)$, then $T_1=T_2$ almost surely [8 mks]
- (b) A random sample $(x_1, x_2, ..., x_n)$ is taken from a normal population with mean 0 and variance σ^2 . Examine if $s^2 = \frac{1}{n} \sum x_i^2$ is a MVUE for σ^2 . [4 mks]
- (c) (i) State Crammer-Rao Inequality (ii) Let $(x_1, x_2, ..., x_n)$ be a random sample from $f(x; \lambda) = \frac{e^{-\lambda}}{x!} \lambda^x$, x=0, 1, ...=0 elsewhere

By taking $\Psi(\lambda)=e^{-\lambda}$, find Crammer-Rao Lower Bound for t, where t is an unbiased estimator for $\Psi(\lambda)$. [7 mks]

QUESTION 5

- (a) Explain the problem of interval estimation with special reference to any particular model [2 mks]
- (b) The tensile strength (x) in Newtons for a certain type of cable was measured for 12 samples. The results were 182, 178, 185, 184, 180, 179, 177, 185, 174, 179, 183, 186. Compute the 90% confidence limits for the mean of x in this type of cable. [6 mks]
- (c) From the sample values 1.5, 2, .8, 1.3, 2.8, .9, 1.6, 4.2, 3.1, 1.4, 2.2, .7, 1.6, .8, obtain the 95% confidence interval for the population variance assuming that the variable is normally distributed with unknown mean and variance [6 mks].

- (d) A random sample of 50 students out of a total of 200 showed a mean of 75 and a SD of 10.
 - (i) What are the 98% confidence limits for estimates of the mean of the 200 students? [3 mks]
 - (ii) With what degree of confidence could we say that the mean of all the 200 students is 75 \pm 1? [3 mks]