

MASENO UNIVERSITY **UNIVERSITY EXAMINATIONS 2016/2017**

FIRST YEAR FIRST SEMESTER EXAMINATION FOR DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

CITY CAMPUS - REGULAR

MAS 809: EPIDEMIC MODELLING

Date: 2nd December, 2016

Time: 2.00 - 5.00pm

INSTRUCTIONS:

Answer ANY THREE Questions.

Observe further instructions on the answer booklet

- (a) Explain clearly what is meant by the following;
 - Epidemic
 - ii. Endemic
 - iii. An Epidemic model

(6 Marks)

(b) Consider the SI model defined by the following equations;

$$\frac{dS(t)}{dt} = -\lambda(t)cS(t)$$

$$\frac{dI(t)}{dt} = \lambda(t)cS(t) - vI(t)$$

where $\lambda(t) = \frac{\beta I(t)}{N(t)}$, N(t) = I(t) + S(t) and c and v are some constants. Show that if $S(t) \cong N(t)$, then

$$I(t) = I_0 e^{(\beta c - v)t}$$

and the time taken, if there is an epidemic, for the number of infected to double is

$$t_d = \frac{\ln 2}{(\beta c - v)}$$

(10 Marks)

(c) Using the results in question (b),or otherwise, determine the conditions under which an epidemic will arise.

(4 Marks)

[20 Marks]

QUESTION THREE

- (a) Briefly explain the main features of each of the following classes of epidemic models;
 - i. Empirical models
 - ii. Deterministic models
 - iii. Stochastic Models

(10 Marks)

- (b) Consider a household of size 7 with 2 zero generation cases;
 - i. List all the possible epidemic chains.

(5 Marks)

ii. Determine the probability that the size of the epidemic chain is five.

(5 Marks)

QUESTION FOUR

[20 Marks]

- (a) Differentiate between the fixed effects and the random effects chain Binomial Models applicable in epidemic modeling. (10 marks)
- (b) Consider the epidemic Chain Binomial model.

Let $i_t: t = 0, 1, ..., (i_{r+1} = 0)$, denote the number of infectives at time t since the onset of the epidemic, and S(t): t = 0, 1, ..., r, $(S_r = S_{r+1})$ be the number of corresponding susceptibles at time t.

Let q_i be the probability that a susceptible escapes infection when exposed to i infectives.

Determine Prob [epidemic chain is $i_0 \rightarrow i_1 \rightarrow \dots i_r$] and deduce the expression for the probability assuming;

- i. Reed Frost model
- ii. Greenwood Model

(10 Marks)

QUESTION FIVE

Consider the "general epidemic" model with susceptibles S(t), infectives I(t), and Removals R(t).

Assuming homogeneous mixing among these classes and with continuous time t, let

$$dS(t)dt = -\beta S(t)I(t)$$

$$\frac{dI(t)}{dt} = \beta S(t)I(t) - \alpha I(t)$$

$$\frac{dR(t)}{dt} = \alpha I(t)$$

with initial conditions $S(0), I(0), R(0) = (S_0, I_0, 0)$ and α and β are some constants. Also let N(t) = R(t) + S(t) + I(t).

(a) Explain this formulation with respect to the spread of diseases.

(6 Marks)

(b) Show that,

i.
$$\frac{dI(t)}{dt} = \beta I(t)(S - \rho), \ \rho = \frac{\alpha}{\beta}.$$

(4 Marks)

ii.
$$S(t) = S_0 e^{\frac{-R(t)}{\rho}}$$
.

(4 Marks)

iii. For N(t) such that $N(t) = \rho + v$ where $v \ll \rho$ with $N(t) \cong S_0$;

$$R(\infty) = 2v$$

$$S(\infty) = \rho - v$$

Comment on your results.

(6 Marks)