

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE OF:
 BACHELOR OF SCIENCE MECHANICAL ENGINEERING BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS (BSME/BTRE/BTAP)

SMA 2270/SMA 2277/AMA 4209: CALCULUS III
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
z=x^{3} y+x^{2} y^{2}+x y^{3}
$$

a) Find the total differential if
b) Determine whether the following sequence in monotonic or not and state the upper bound.

$$
\left|a_{n}\right|=\frac{2 n}{1+n}
$$

c) Use geometric series to express $0.4166 \ldots$. as a ratio of two integers

$$
\lim _{x \rightarrow 1}\left\{\frac{1}{\ln x}-\frac{1}{x-1}\right\}
$$

d) Evaluate
(4 marks)

$$
\sin 45^{\circ}=\frac{1}{\sqrt{2}} \quad \cos 45^{\circ}=\frac{1}{\sqrt{2}}
$$

e) Given and . Approximate sin ${ }^{440}$ by use of a Taylor's series expansion up to the term containing x^{3}

$$
f(x)=\frac{k}{1+x^{2}}
$$

f) The probability density function has the area under the curve on the interval equal to 1 , determine the value of K
(6 marks)

$$
\int_{2}^{4} \int_{1}^{2}\left(x^{2}+y^{2}\right) d y d x
$$

g) Evaluate
(4 marks)

Question Two

a) Find the moments and centre of mass of the system of objects that have masses $3 \mathrm{~kg}, 4 \mathrm{~kg}$ and 8 kg at the points $(-1,1),(2,-1)$ and $(3,2)$
b) A ball is dropped from a height 6 m and begins bouncing the height of each bounce is $3 / 4$ the previous height. Find the total distance travelled by the ball before it rests
c) Find the sum to infinity of the series:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\{\frac{1}{n}-\frac{1}{n+1}\right\} \tag{5marks}
\end{equation*}
$$

d) satisfies the hypothesis of the mean value theorem in the interval (1, 4). Determine the value of C

$$
r=1+\sin \theta
$$

e) Sketch the graph of

Question Three

$$
\begin{equation*}
\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \quad f(x, y)=\sqrt{9-x^{2}-y^{2}} \tag{4marks}
\end{equation*}
$$

a) Determine and at point $(1,2)$ for

$$
f(x)=\cos x
$$

b) Find the Maclaurin's polynomial $\mathrm{P}_{0}, \mathrm{P}_{2}, \mathrm{P}_{4}$ and P_{6} for .Use P_{6} to approximate the value at $\cos (0.1)$

$$
f(x, y)=x y^{2}+x^{2} \quad y=x^{2}
$$

c) Evaluate the double integral of over the region bounded by the curves and $x=y^{2}$
(4 mark)

$$
\int_{1}^{\infty} \frac{1+e^{-x}}{x} d x
$$

d) Prove that the integral is divergent

$$
\lim _{x \rightarrow 1} \operatorname{arc} \sin \left\{\frac{1-\sqrt{x}}{1-x}\right\}
$$

e) Evaluate

Question Four

$$
\sum_{n=1}^{\infty}\left\{\frac{n^{2}-1}{n^{2}+n}\right\}
$$

a) Test the series for convergence or divergence

$$
f(x)=x^{3}-12 x \quad 0 \leq x \leq 2 \sqrt{3}
$$

b) Given that satisfies the Roller's theorem on the interval of C
. Find the value (3 marks)

$$
x=r(\theta-\sin \theta) \quad y=r(1-\cos \theta)
$$

c) Find the length of the one arch of the cycloid and

$$
Z_{x y}=Z_{y x} \quad Z(x, y)=2 x^{2}-3 x y+4 y^{2}
$$

d) Show that for the function Z given by
(4 marks)

$$
f(x)=e^{x}
$$

e) Find the radius of convergence of the function

Question Five

$$
\left(2, \frac{2 \pi}{3}\right)
$$

a) Find the rectangular coordinates corresponding to the polar coordinates

$$
\begin{equation*}
\frac{d z}{d r} \quad \frac{d z}{d s} \quad z=x^{2}+x y+y^{2} \tag{4marks}
\end{equation*}
$$

b) Find and given that where $x=2 r+s$ and $y=r-2 s$

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

c) Evaluate the

$$
\lim _{x \rightarrow \infty}\left\{\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}\right\}
$$

d) Find the value of

$$
z=x^{2}+y^{2}
$$

e) Find the volume of the solid that lies under the paraboloid and above the region D in the xy - plane bounded by the line $\mathrm{y}=2 \mathrm{x}$ and the parabola $\mathrm{y}=\mathrm{x}^{2}$

