

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN METEOROLOGY

SMR 410: AGROMETEOROLOGY II

DATE: 06th DECEMBER, 2017

TIME: 8.00 -10.00 AM

INSTRUCTIONS Answer Question ONE and any other TWO questions

Answer QUESTION ONE and any other TWO Questions

1. a) Make brief notes on the following terminologies:	
i. Turgor pressure (Ψ_p)	2 Marks
ii. Single factor experiment	2 Marks 2 Marks
ii. Bias	2 Marks 2 Marks
	2 Marks 2 Marks
iv. C_4 plant	
b) Discuss, with the help of a diagram, the variation of photosynthesis from sunrise	
	5 Marks
c) i. Highlight how the following factors affect photosynthesis	0.) f 1
ii) Wind	2 Marks
iii) ii) Relative humidity	2 Marks
 d) Highlight the sources of variation in a Randomized Complete Block design 5Marks 	
e) Discuss the rationale for blocking in experimental designs	4 Marks
f) i) Identify two climatic requirements for optimum livestock production	2 Marks
ii) Highlight two effects of heat stress on livestock	2 Marks
2. a) With the help of a sketch diagram, describe the Soil-Plant-Water-Atmosphere Con	tinuum
(SPWAC)	15Marks
b) Describe a natural process comparable to SPWAC.	5 Marks
·) _ ····· · ··························	
3. a) Discuss the agricultural impacts of three meteorological disasters in Kenya.	11 Marks
b) Suggest strategies for preparedness for each disaster	9 Marks
4. The Short rains (OND) 2017 in Kitui County were expected to be largely depressed	and poorly
distributed. It happens that these are the more reliable rains for crop production in the	ne County and
poor performance could mean a long period of food insecurity until redemption with	the Short rains
of 2018. If the Governor had hired you to prepare an advisory for her people with re-	
Preparations for Short rains ii) Handling of food they already have iii) Choice of cro	
Management of livestock v) Management of water.	/

What would have been your advisory?

20 Marks

- 5. Six varieties of maize were replicated in four locations with different climatic regimes. The harvested grain was reported as shown in the table below.
- a) Construct an ANOVA table
- b) Are the varieties different (5%)

15 Marks 5 Marks

		Replication											
Varieties	Ι	II	III	IV	Total								
V1	31.2	16.4	17.0	27.2	91.8								
V2	24.3	12.4	29.5	40.3	106.5								
V3	17.8	24.0	23.5	34.5	99.8								
V4	16.0	29.0	38.0	40.2	123.2								
V5	33.5	32.0	30.1	33.4	129								
V6	37.1	25.5	40.7	42.3	145.6								
Total	159.9	139.3	178.8	217.9	695.9								

TABLE A 14, Part I The 5% (roman type) and 1% (boldpace type) Points for the Distribution of ${\cal F}$

J												P1 df in	Numer	ator											85
ł	1	2	3	4	5	6	7	8	9	10	н	12	14	16	20	24	30	40	50	75	100	200	500	æ	-11
t	161	200	216 5,403	225	230 5,764	234 5,859	237 5,928	239 5,981	241 6,022	242 6,056	243 6,082	244 6,106	245 6,142		248 6,208	249 6,234	250 6,261	251 6,286	252 6,302	253 6,323	253 6,334		254 6,361	254 6,366	1
	18.51 98.49	19.00	19.16 99.17	19.25 99.25	19.30 99.30	19.33 99.33	19.36 99.36	19.37 99.37	19.38 99.39	19.39 99.40	19.40 99.41	19.41 99.42	19.42 99.43	19.43 99.44	19.44 99.45	19.45 99.46	19.46 99.47	19.47 99.48	19.47 99.48	19.48 99.49	19.49 99,49	19.49 99.49	19.50 99.50	19.50 99.50	194
	10.13 34.12	9.55	9.28 29.46	9.12 28.71	9.01 28.24	8.94 27.91	8.88 27.67	8.84 27.49	8.81 27.34	8,78 27,23	8.76 27.13	8.74 27.05	8.71 26.92	8.69 26.83	8.66 26.69	8.64 26.60	8.62 26.50	8.60 26.41	8.58 26.35	8.57 26.17		8.54 26.18			
	7.71	6.94	6.59	6.39	6.26 15.52	6.16 15.21	6.09 14.98	6.04 14.80	6.00 14.66	5.96 14,54	5.93 14.45	5.91 14.37	5.87 14.24	5.84 14.15	5.80 14.02	5.77 13.93	5.74 13.83	5.71 13.74	5.70 13.69	5.68 13.61	5.66 13.57	5.65 13.52	5.64 13,48	5.63 13.46	
	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82 10.29	4.78	4.74				4.60 9.68			4.50 9.38	4.46 9.29	4.44 9.24		4.40 9.13		4.37 9.04	4.36 9.02	ŝ
ł		5.14			4.39 8.75	4.28	4.21		4.10 7.98	4.06 7.87	4.03					3.84 7.31	3.81 7.23	3.77 7.14	3.75 7.09	3.72 7.02			3.68 6.90	3.67 6.88	
l	5.59	4.74				3.87	3.79 7.00	3.73 6.84	3.68		3.60						3.38 5.98	3.34 5.90	3.32 5.85	3.29 5.78		3.25 5.70	3.24 5.67	3.23 5.65	
		4.46		3.84 7.01				3.44	3.39	3.34 5.82	3.31 5.74		3.23	3.20 5.48			3.08 5.20	3.05	3.03 5.06					2.93 4.86	Ĺ
	5.12	4.26		3.63			1.29 5.62	3.23 5.47	3.18						2.93 4.80		2.86 4.64		2.80 4.51	2.77		2.73 4.36	2.72 4.33	2.71 4.31	
		4.10	3.71	3.48			3.14 5.21	3.07 5.06	3.02 4.95						2.77	2.74 4.33	2.70		2.64 4.12		2.59 4.01		2.55 3.93	2.54 3.91	1000
		3.98	3.59	3.36			3.01		2.90							2.61 4.62	2.57 3.94		2.50 3.80				2.41 3.62		
		3.88	3.49						2.80		2.72				2.54	2.50 3.78	2.46 3.70		2.40 3.56		2.35		2.31	2.30 3.36	
		3.80	3.41		3.02	2.92	2.84	2.77	2.72		2.63		2.55	2.51		2.42	2.38	2.34						2.21 3.16	

The function is computed in part from Fisher's table VI (7). Additional entries are by interpolation, mostly graphic. tdf in denominator.