

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 13S 14J)

EBC 2207: SOIL MECHANICS II

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions Maximum marks for each part of a question are as shown Use neat, large and well labeled diagrams where required

© 2015 -Technical University of Mombasa

Question One

- **a)** Define the following:
 - (i) Ultimate bearing capacity
 - (ii) Allowable bearing capacity
- b) Explain the THREE considerations that a foundation is expected to satisfy (6 marks)
- c) A footing 2.5m square is located at a depth of 1.5m in dense sand of shear strength parameters $\phi' = 40^{\circ}$ C' = 25*KN* / m^2

Determine ultimate bearing capacity using figure 1 provided for the

following cases:

- (i) Ground water level at foundation level
- (ii) Ground water level at the surface:

 $(Take_{b}=17KN/m^{3}_{sat}=20KN/m^{3})$

(10 marks)

(6 marks)

Question Two

- a) Briefly describe the general mode of shear failure that can occur in a soil below a formation
- b) Explain the terms in Terzaghi's general expression used to determine ultimate bearing capacity (5 marks)
- c) A strip footing is designed to carry a safe load of 750KN per meter run a depth of 0.55m in silty sand. Ground water level is at foundation level considering a factor of safety of 3 determine using figure the width of the footing.

 $\phi' = 40^{\circ}$, c' = 0, $_{b} = 18KN / m^{3}$ and $_{sat} = 21KN / m^{3}$

(9 marks)

Question Three

a)	Outline the produce for student penetration test specific gravity for the soil was 2.68, ratio.	find the void (8 marks)	
b)	Explain the adjustment needed if standard penetration test is carried but below water table		
c)	Explain the effect of ground water on foundation settlement	(2 marks) (4 marks)	
d)	Explain the THREE conditions that a foundation is expected to satisfy	(6 marks)	
Question Four			
a)	Explain the term shear strength parameter as applied to soils	(4 marks)	

b) Drained traixial tests were carried out on fully saturated specimens of a clay soil. Each specimen tested measured 38mm in diameter an 76mm in length. The test results were:

(4 marks)

Test Number	1	2	3
All round pressure (KN/m ²)	200	400	600
Axial load (N)	480	895	130
			7
Axial compression (mm)	7.22	8.35	9.42
Volume change (cm ³)	5.25	7.39	9.31

(i) Compute data for principal stresses

(ii) Determine shear strength parameters in terms of effective stresses

Question Five

- **a)** Explain:
 - (i) The term "Rankine Earth Pressure"
 - (ii) Effect of "surcharge" on cohesive soils

(7 marks)

(16 marks)

b) A vertical wall supports a sol mass with horizontal balk and has a uniformly distributed surcharge as shown in figure 1:

figure 1

(i) Determine distribution of lateral earth pressure at the back of the wall

(ii) Determine level at which active thrust acts at the back of the wall

(13 marks)