TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN ELECTRICAL POWER ENGINEERING DIPLOMA IN TELECOMMUNICATION \& INFORMATION ENGINEERING DIPLOMA IN INSTRUMENTATION \& CONTROL ENGINEERING

AMA 2350: ENGINEERING MATHEMATICS V
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)

$$
U=x^{2}-y^{2}+e^{x} \cos y+8
$$

a) Given that
(i) Show that U is harmonic
(4 marks)

$$
f(z)=U+j V
$$

(ii) Find the function V such that is analytic where U is as in (i)

$$
x^{4}+5 x-20=0
$$

b) Given that x_{n} is an approximation to the root of the equation
(i) Show using Newton-Raphson method that a better approximation is given by:

$$
x_{n+1}=\frac{3 x_{n}^{4}+20}{4 x_{n}^{3}+5}
$$

(ii) Taking the first approximation $\mathrm{X}_{0}=1.9$ find to five d.p the root of the equation ($\mathbf{4}$ marks)

$$
f(z)=w=\sin z
$$

c) Test the analyticity of

$$
f(x)=x \quad 0 \leq x \leq 3
$$

d) Expand half range Fourier:
(i) Sine series
(ii) Cosine series

Question Two

a) Table 1 satisfies the function:

x	-2	0	2	4	6	8	10
$f(x)$	6	8	10	60	206	496	978

Use Newton-Gregory forward difference formula to determine the value of:
(i) $\mathrm{f}(-1.8)$
(ii) $f(8.2)$
(12 marks)

$$
f(x)=\cos x \quad \pi
$$

b) Determine half range sine series for the function in the range 0 to

Question Three

$$
f(z)=z^{3}
$$

a) Show that is analytic everywhere in the entire z - plane

$$
U=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)
$$

b) Show that is harmonic and determine the conjugate harmonic V

Question Four

$$
x^{3}-5 x+3=0
$$

a) Use Newton-Raphson Formula to obtain the root of the equation the answer correct to five decimal places
taking $\mathrm{x}_{0}=1.0$. Give (8 marks)
b) Use Newton-Gregory Formula difference formula to obtain a poly nomial of minimum degree which will exactly fit the data given below.

x	-0.5	0.0	0.5	1	1.5
$\mathrm{f}(\mathrm{x})$	1.327	1.382	1.416	1.452	1.513

Hence evaluate:
$f(0.25)$
(i)

$$
\int_{0}^{1} f(x) d x
$$

(ii) correct to four d.p
(12 marks)

Question Five

a) Sketch the following function for at least three period and state whether odd, even or neither.

$$
f(x)=\left(\begin{array}{cl}
x+\pi & -\pi<x<0 \\
\pi-x & 0<x<\pi \\
f(x+2 \pi) &
\end{array}\right)
$$

(i)
(ii)

$$
f(t)=\left(\begin{array}{cc}
t^{2} & -\pi<t<0 \\
-t^{2} & 0<t<\pi \\
f(t+2 \pi)
\end{array}\right.
$$

b) A function $f(t)$ is defined by:

$$
f t=\left\{\begin{array}{cc}
0 & -2<t<0 \\
t & 0<t<2 \\
f(t+4)
\end{array}\right.
$$

Obtain the Fourier series for the function

