

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS

DIPLOMA IN ELECTRICAL POWER ENGINEERING DIPLOMA IN TELECOMMUNICATION & INFORMATION ENGINEERING DIPLOMA IN INSTRUMENTATION & CONTROL ENGINEERING

AMA 2350: ENGINEERING MATHEMATICS V

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of $\ensuremath{\textbf{FIVE}}$ questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One (Compulsory)**

$$U = x^2 - y^2 + e^x \cos y + 8$$

a) Given that

(i) Show that U is harmonic

$$f(z) = U + jV$$

(ii) Find the function V such that

 $x^4 + 5x - 20 = 0$

b) Given that x_n is an approximation to the root of the equation

(i) Show using Newton-Raphson method that a better approximation is given by:

$$x_{n+1} = \frac{3x_n^4 + 20}{4x_n^3 + 5}$$

(ii) Taking the first approximation $x_0 = 1.9$ find to five d.p the root of the equation (4 marks)

$$f(z) = w = \sin z$$

c) Test the analyticity of

 $f(x) = x \quad 0 \le x \le 3$

half range Fourier:

(i) Sine series

(ii) Cosine series

Question Two

d) Expand

a) Table 1 satisfies the function:

X	-2	0	2	4	6	8	10
f(x)	6	8	10	60	206	496	978

Use Newton-Gregory forward difference formula to determine the value of:

(i) f(-1.8)

(ii) f(8.2)

$$f(x) = \cos x$$

in the range 0 to

b) Determine half range sine series for the function

Question Three

 $f(z) = z^3$

a) Show that is analytic everywhere in the entire z- plane (7 marks) $U = \frac{1}{2} \ln \left(x^2 + y^2\right)$

b) Show that

is harmonic and determine the conjugate harmonic V (13 marks)

Question Four

(5 marks) (5 marks)

is analytic where U is as in (i) **(4 marks)**

(4 marks)

(4 marks)

(12 marks)

(8 marks)

π

2

a) Use Newton-Raphson Formula to obtain the root of the equation the answer correct to five decimal places

d.p

b) Use Newton-Gregory Formula difference formula to obtain a poly nomial of minimum degree which will exac

ctly fit the data	given l	below.					
	X	-0.5	0.0	0.5	1	1.5	

f(x) 1.327 1.382 1.416 1.452 1.513

Hence evaluate: $f(0.25)$	
(i)	
$\int_0^1 f(x) dx$	
(ii)	correct to four

Question Five

- a) Sketch the following function for at least three period and state whether odd, even or neither.
 - $f(x) = \begin{pmatrix} x + \pi & -\pi < x < 0\\ \pi x & 0 < x < \pi\\ f(x + 2\pi) \end{pmatrix}$ (i) (3 marks) $f(t) = \begin{pmatrix} t^2 & -\pi < t < 0 \\ -t^2 & 0 < t < \pi \\ f(t+2\pi) \end{pmatrix}$ (ii)
- **b)** A function f(t) is defined by:

$ft = \begin{cases} 0 & -2 < t < 0 \\ t & 0 < t < 2 \\ f(t + A) \end{cases}$

Obtain the Fourier series for the function

 $x^3 - 5x + 3 = 0$ taking $x_0 = 1.0$. Give (8 marks)

(12 marks)

(3 marks)

(14 marks)