

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN METEOROLOGY

SMR 305: APPLICATIONS OF STATISTICAL METHODS IN METEOROLOGY I

DATE: 07TH DECEMBER, 2017

TIME: 10.30 -12.30 PM

INSTRUCTIONS TO CANDIDATES

(a) Answer ALL the Questions in Section A(b) Answer ANY TWO Questions in Section B

<u>SEC</u> Que			Answer	ALL Ques	tions in th	is Section				30 Marks	-
i	a)	Brief	v explain	the follow	ving terms	: skewnes	s and kurt	osis		(2 marks)	
I	o)		• •		-				cation ov	ver a period of	f
			ars, units	0				C		Ĩ	
	4	44	52	80	54	60	42	78	36	84	80
	!	56	66	84	76	52	76	52	62	60	56
	(68	60	40	48	70	84	74	70	72	66
		Gene	rate a freq	uency tab	le and dra	w the follo	owing				
		i)	Histogra	am			-			(4 marks)	
		ii)	Frequen	cy orgive						(2 marks)	
(c)		oute the fo	• •		ata above				(6 marks).	
		i)	Median		C						
		ii)	mean								
		iii)	Varianc	e							
(d)		any 3 prop	perties of	the standa	rd normal	distributio	on		(3 marks)	
	e)		• • •	-			leteorolog		Series	(2 marks)	
	F)		•	-			ation and			· /	
	,					1		1 0		(3 marks)	
1	g)	State	2 reasons	why data	inconsiste	ency may a	arise in me	eteorologio	cal data (· /	
) 1)			•		• •	found to	U	,	,	
	.,		-		-	-	epth is not				
			er of pans		0		-r	j			

i)	Between 120mm to 151 mm	(3 marks)
ii)	More than 185mm	(3 marks)

SECTION B: Answer any Two Questions

Question 2

An urban planning group is interested in estimating the difference between the mean household incomes for two neighborhoods in a large Metropolitan area. Independent random sample of households in neighborhoods provided the following results.

Neighborhood	Sample size	Mean	Standard deviation
1	8	15700	700
2	12	14500	850

a) State the Null Hypothesis and the Alternative Hypothesis. At the 0.05 level of significance what can you conclude about the difference between the two means of the household? (10 marks)

Null hypothesis: H_0 : $\mu_1 = \mu_2$ or H_0 : $\mu_1 - \mu_2 = 0$

Alternative hypothesis: H_a : $\mu_1 > \mu_2$ or: H_a : $\mu_1 - \mu_2 > 0$

b) Estimate the confidence interval for the difference between the two means (10 marks)

Question 3

a) If *O* and *E* are the observed and expected frequencies respectively, show that for discrete observations the Chi (χ^2) Square maybe expressed as; (5 marks)

$$\chi 2 = \frac{\sum Oi}{\sum ei} - N$$

b) The table below gives a random sample of respondents classified by gender (male or female) and subject preference (English, Mathematics, or Science).

Subject									
		English	Mathematics	Science					
Gender	Male	400	350	250					
	Female	450	500	250					

Is there a gender gap? Do the men's subject preferences differ significantly from the women's preferences? Prepare the theoretical (expected) frequency table and compute the chi-square test statistic. Use alpha=0.05 level of significance. (10 marks)

- H 0: Gender and subject preferences are independent
- $H_{1:}$ Gender and subject preferences are not independent
 - c) Explain how to test for randomness and persistence in Time series analysis (5 marks)

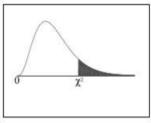
Question 4

Use the data below to answer the following questions.

Х	110	130	180	240	280	320	380	420	470	530
Y	21	27	29	29	31	30	33	37	40	44

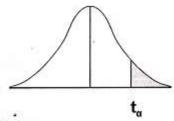
a) Compute the equation of the regression line (10 marks)

Question 5


a) Due to various reasons there can be missing data. Discuss these two methods of estimating missing data giving their advantages and disadvantages in each case

(10 marks)

- i) Isopleth method
- ii) Arithmetic mean method
- b) Discuss two methods of testing data homogeneity (10 marks)


b) Test the hypothesis that there is no correlation in the population. Use 0.05 significance level. (10 marks).

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2 = \chi^2_\alpha.$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16,919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23,542	26.296	28.845	32,000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30,191	33,409	35.718
18	6.265	7.015	8.231	9.390	10.865	25,989	28,869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38,582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32,007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36,415	39.364	42.980	45,559
25	10,520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14,573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50,993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18,493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24,433	26,509	29.051	51.805	55,758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79,490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51,739	55.329	85.527	90.531	95.023	100,425	104.215
80	51.172	53.540	57.153	60.391	64.278	96,578	101.879	106,629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118,498	124.342	129.561	135.807	140.169

Table t Distribution

.

d.f.	t _{.100}	t.050*	t.025**	t.010	t.005	d.f.
1	3.078	6.314	12.706	31.821	63.657	1
2 3	1.886	2.920	4.303	6.965	9.925	2 3
3	1.638	2.353	3.182	4.541	5.841	3
4	1.533	2.132	2.776	3.747	4.604	4
5	1.476	2.015	2.571	3.365	4.032	5
6	1.440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
10	1.372	1.812	2.228	2.764	3.169	10
11	1.363	1.796	2.201	2.718	3.106	11
12	1.356	1.782	2.179	2.681	3.055	12
13	1.350	1.771	2.160	2.650	3.012	13
14	1.345	1.761	2.145	2.624	2.977	14
15	1.341	1.753	2.131	2.602	2.947	15
16	1.337	1.746	2.120	2.583	2.921	16
17	1.333	1.740	2.110	2.567	2.898	17
18	1.330	1.734	2.101	2.552	2.878	18
19	1.328	1.729	2.093	2.539	2.861	19
20	1.325	1.725	2.086	2.528	2.845	20
21	1.323	1.721	2.080	2.518	2.831	21
22	1.321	1.717	2.074	2.508	2.819	22
23	1.319	1.714	2.069	2.500	2.807	23
24	1.318	1.711	2.064	2.492	2.797	24
25	1.316	1.708	2.060	2.485	2.787	25
26	1.315	1.706	2.056	2.479	2.779	26
27	1.314	1.703	2.052	2.473	2.771	27
28	1.313	1.701	2.048	2.467	2.763	28
29	1.311	1.699	2.045	2.462	2.756	29
inf.	1.282	1.645	1.960	2.326	2.576	inf

There is only a 5% probability that a sample with 10 degrees of freedom will have a t value greater than 1.812.

* one tail 5% α risk ** two tail 5% α risk

Cumulative Standardized Normal Distribution

Area from -∞ to Z

			-		0	Z				
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998