SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN METEOROLOGY

SMR 306: QUANTITATIVE METHODS AND COMPUTER APPLICATIONS IN METEOROLOGY III

DATE: 08TH DECEMBER, 2017
TIME: 4.00-6.00 PM
INSTRUCTIONS TO CANDIDATES

Answer Question 1 and other two Questions

Question 1

(a) Define
(i) Gibbs phenomena.
(iii) Orthonormal functions.
(b) For any order n, the Legendre function is given by $P_{n}(x)=\frac{1}{2^{n} n!} \frac{\mathrm{d}^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}\left(\mathrm{x}^{2}-1\right)^{\mathrm{n}}$, find $P_{3}(x)$.
(c) Show that $\operatorname{Sin}^{2} m x=\frac{1}{2}[1-\operatorname{Cos}(2 m) x]$
(d) Given a dataset in network common data form (netcdf) containing two variables: rainfall (ppt) and temperature (tmp), running from 1901 to 2010, write a comprehensive executable script in Grid Analysis and Display System (GrADS) that calculates and displays the climatology of the two variables on the same page for the period 1951-2000.
(14 Marks)

Question 2

Show that;
a) When $m=n \neq 0, \int_{0}^{2 \pi} \operatorname{Cos} n x \operatorname{Cos} n x \mathrm{dx}=\pi$
(8 Marks)
b) The function $f_{m}(x)=\operatorname{Sin} m x$, for $m=1,2,3, \ldots n$ over the integral $-\pi<x<\pi$ form an orthogonal set given;
(i) $m \neq n$
(6 Marks)
(ii) $m=n$
(6 Marks)

Question 3

a) Differentiate between even and odd functions.
(4 Marks)
b) Find the Fourier series representative of $f(x)=\left\{\begin{array}{c}-1, \text { for }-\pi<x<0 \\ 1, \text { for } 0<x<\pi\end{array}\right.$

Question 4

Consider the equation $2 \frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} y}{\partial y^{2}}=0$. Determine;
(a) The conical form of the curve.
(4 Marks)
(b) The general solution of the function.

Question 5

(a) Define Laplace transform.
(b) Find $\mathscr{L}\left(3+5 x+a x^{3}\right)$.
(c) Use the Laplace transformations to solve the initial value ordinary differential equation (ODE) $y^{\prime \prime}=4 y+3 y=0$ given that $y(0)=3$ and $y^{\prime}(0)=1$.

