

TECHNICAL UNIVERSITY OF KENYA

DEPARTMENT OF AERNAUTICAL AND AVIATION ENGINEERING UNIVERSITY EXAMINATION 2016/2017

UNIT CODE: EEAQ 1201
UNIT NAME: MATHEMATICS 1 B: VECTOR ANALYSIS (PART 2).

DATE: APRIL SERIES

TIME: 2 HOURS

INSTRUCTIONS:

1) Answer Question ONE and any other TWO questions.

- 2) Mobile phones and any written material are prohibited in the examination room.
- 3) No writing should be done on this question paper. Any rough work should be done at the back of the answer booklet and canceled.
- 4) All answer booklets should be handed in at the end of the exam whether used or not.
- 5) Programmable calculators are prohibited.

QUESTION ONE (30 MARKS)

a.	Define the term vector quantity and give two examples of vectors	(2 mks)
b.	Given that a =2i + j - 3k, b = i - 2j - 5k,c = 3i + j + 2k.Evaluate	
	i. a + 2b +3c	(2 mks)
	ii. angle between a and b	(3 mks)
	iii. unit vector parallel to c	(2 mks)
c.	Given that $r = \sin t I + \cos t j + tk$. Find i. $\frac{dr}{dt}$ ii. $\left \frac{d^2r}{dt^2} \right $	(3mks)
	If $A = (2x^2y - x^4)I + (e^{xy} - y\sin x)j + (x^2\cos y)k$. Find	
	i. $\frac{\partial^2 A}{\partial x^2}$ ii) $\frac{\partial^2 A}{\partial y^2}$ iii) $\frac{\partial^2 A}{\partial x \partial y}$	(6 mks)
e.	If $A = xz^3i - 2x^2yzj + 2yz^4k$ and $\emptyset = 3x^2y - y^3z^2$. Find	

i. $\nabla . A$ at (1,-2,-1) (2 mks) ii. $\nabla . \Delta$ at (1,-2,-1) (2 mks) iii. Curl (grad \emptyset) or $\nabla x (\nabla \emptyset)$ at (1,-2,-1)f. If $A = (3x^2 + 6y)i - 14yzj + 20xz^2 k$. Evaluate $\int A. dr$ from (0,0,0) to (1,1,1) along the path C: x = t, $y = t^2$ and $z = t^3$. (3 mks)

QUESTION TWO (20 MARKS)

- a. A particle moves along a curve whose parametric equations are $x = 2\sin 3t$, $y = 2\cos 3t$ and z = 3t. Find the velocity and acceleration at time t=0. (4 mks)
- b. If $A = x^2yzi 2xz^3j + 3xz^2k$ and $B = 2zi + yj 3x^2k$. Find

i.
$$\frac{\partial (A.B)}{\partial x}$$
 at (1,0,-2) (3 mks)

ii.
$$\frac{\partial^2 (A XB)}{\partial x \partial y}$$
 at $(1,0,-2)$ (4 mks)

c. Consider a vector V given by V = (x + 2y + az)I + (bx - 3y - z)j + (4x + cy + 2z)k. Find constants a, b, c so that V is irrotational / conservative. Hence find the scalar potential \emptyset such that $V = \nabla \emptyset$ (9 mks)

QUESTION THREE (20MARKS)

- a. Given the space curve $x=3 \cos t$, $y=3 \sin t$, z=4t. Find
- i. Curvature ii. Radius of curvature iii. Torsion (12 mks)

b.if
$$\emptyset = 2xyz^2$$
, F=xy I – zj + x^2k and C is the curve x = t^2 , y = 2t, z = t^3 from t = 0

and
$$t = 1$$
. Evaluate i. $\int \phi \, dr$ (3 mks)

ii.
$$\int F X dr$$
 (5 mks)

QUESTION FOUR (20MARKS)

- a. The acceleration of a particle at any time t is given by $a = e^{-t}i 6(t+1)j + 3\sin t$ k. If the velocity v and displacement r are both zero at t =0. Find v and r at any time (6 mks)
- b. Evaluate $\int F \cdot dr$ where F=(x-3y)i+(y-2x)j and C Is the closed curve in the xy plane, x=2 cos t, y=3 sint from t=0 and t= 2π if C is traversed in the anticlockwise direction. (8 mks)
- c. Use Green's theorem to evaluate $\int (xy + y^2)dx + x^2dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$ (6 mks)

QUESTION FIVE (20MARKS)

a. Evaluate $\iint_S A.n \, ds$ where A = 18z i – 12 j +3yx k and S is part of the plane 2x + 3y + 6z = 12 which is located in the first octant. (10 mks)

- b. Evaluate $\iint_S F.n \, ds$ where $F = 4xz \, I = y^2 \, j + yz \, k$ and S is the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1 using divergence theorem (5 mks)
- c. Use divergence theorem to evaluate $\iint_S A \cdot n \, ds$ given that $A = 4x \, i 2y^2 \, j + z^2 k$ taken over the region bounded by $x^2 + y^2 = 4$, z = 0 and z = 4. (5 mks)