MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY ORDINARY EXAMINATION
2017/2018 ACADEMIC YEAR
THIRD YEAR SECOND SEMESTER EXAMINATION FOR THE DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

SEE 1324 - POWER SYSTEMS II
DURATION: 2 HOURS
DATE: $16^{\text {TH }}$ APRIL, 2018
TIME: 9.00-11.00 A.M.

Instructions to Candidates:

1. Answer Question $\mathbf{1}$ and Any Other Two questions.
2. Mobile phones are not allowed in the examination room.
3. You are not allowed to write on this examination question paper.
4. You should have a scientific calculator for this examination

SECTION A - ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE

a) State three causes of high voltage surges in overhead transmission lines.
b) Derive an expression for surge impedance of a loss-free overhead transmission line. (4 marks)
c) Outline the factors that affect the transient stability of a power system
d) Explain the following terms as applied to power system stability
i. Dynamic stability
ii. Stability limit
(4 marks)
e) Explain any two basic standard parameters that exist in power systems under no-load conditions.
f) With the aid of network sketches, illustrate the configurations applied to determine transmission line parameters.
g) Discuss the significance of symmetrical components when analyzing power system conditions.
h) (i) Outline the main types of transformers applied to regulate the supply of electrical energy.
(ii) A 1-Ø transformer $400 / 600 \mathrm{~V}$ draws a no-load current of 4 A at a power factor of 0.2 lagging, if the secondary supplies a load of 280 A at a power factor of 0.8 lagging. Determine the current and the power factor of the primary circuit.

SECTION B - ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO

a) State three properties of overhead line conductor materials used for transmission and distribution of electrical energy
b) With reference to transmission lines, explain the following
i. Skin effect
ii. Ferranti effect
iii. Transposition of overhead line conductors
c) With the aid of an equivalent circuit and phasor diagram, show that for a short transmission line, the sending end voltage
$V_{s}=\left[\left(\mathrm{V}_{\mathrm{s}} \operatorname{Cos} \emptyset_{\mathrm{R}}+\mathrm{IR}\right)^{2}+\left(\mathrm{V}_{\mathrm{R}} \operatorname{Sin} \emptyset_{\mathrm{R}}+\mathrm{IR}\right)^{2}\right]^{1 / 2}$
d) A three-phase, overhead line delivers power to a star-connected load of 75 MVA at 132 KV and 0.8 lagging power factor. The series impedance of the line is $(28+j 63)$ ohms per phase and the shunt admittance are $4 \times 10^{-4}<90^{\circ}$ siemens per phase. Use normal $-\pi$ method to determine the:
i. Sending-end voltage
ii. Sending-end line current and its power factor
iii. Transmission efficiency

QUESTION THREE

a) State three types of unsymmetrical faults on a three-phase power system.
b) With the aid of phasor diagrams, show that the expression for zero sequence current I_{0} of a three-phase unbalanced system is given by: $I_{o}=\frac{1}{3}\left(\bar{I}_{R}+\bar{I}_{Y}+\bar{I}_{B}\right)$ where I_{R}, I_{Y} and I_{B} are phasor currents in the red, yellow and blue phases respectively.
c) In a 3- \varnothing four wire system, currents in the red, yellow and blue phases under fault conditions are $\mathrm{I}_{\mathrm{R}}=(10+j 20) \mathrm{A}, \mathrm{I}_{\mathrm{Y}}=(12-j 10) \mathrm{A}$ and $\mathrm{I}_{\mathrm{B}}=(-3-j 5) \mathrm{A}$ respectively

Determine the
i. Zero
ii. Positive
iii. Negative

Sequence components of currents on the red phase

QUESTION FOUR

a) (i) Outline the advantages of instrument transformers.
(ii) Explain the basic construction features of a transformer.
b) (i) An auto-transformer is used to reduce the voltage from 500 V to 400 V to a supply of 20 KW at a unity power factor. Assuming a no losses and a no magnetizing current condition, determine the current in each part of the transformer winding.
(ii) Explain the term voltage regulation as applied to transformers.
c) (i) With the aid of sketches, outline the groupings of 3- \varnothing transformers.
(ii) A 3-Ø 415 V load takes a line current of 800 A from a $3300 / 415 \mathrm{~V}$ star-delta transformer. If the whole system is supplied from $11000 / 3300 \mathrm{~V}$ star-star transformer, determine the:
I. Value of current and voltage in each part of the circuit
II. Turns ratio of both transformers

