MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY ORDINARY EXAMINATION

2017/2018 ACADEMIC YEAR
THIRD YEAR SECOND SEMESTER EXAMINATION FOR THE DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

SEE 1306 - ENGINEERING MATHEMATICS VI
DURATION: 2 HOURS
DATE: $18^{\text {TH }}$ APRIL, 2018
TIME: 9.00 - 11.00 A.M.

Instructions to Candidates:

1. Answer Question $\mathbf{1}$ and Any Other Two questions.
2. Mobile phones are not allowed in the examination room.
3. You are not allowed to write on this examination question paper.

SECTION A - ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE

a) Let $\mathrm{f}(\mathrm{x})$ be a function of period 2π such that
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}1 & -\pi<x<0 \\ 0 & 0<x<\pi\end{array}\right.$
i. Sketch a graph of $\mathrm{f}(\mathrm{x})$ in the interval $-2 \pi<x<2 \pi$
ii. Show that the Fourier Series for $\mathrm{f}(\mathrm{x})$ in the interval $-\pi<x<\pi$ is

$$
\begin{equation*}
\frac{1}{2}-\frac{2}{\pi}\left[\operatorname{Sin} x+\frac{1}{3} \operatorname{Sin} 3 x+\frac{1}{5} \operatorname{Sin} 5 x+\cdots\right] \tag{15marks}
\end{equation*}
$$

b) Sketch the graphs of the following functions inserting relevant values
i. $\quad f(t)= \begin{cases}3 t & 0<t<1 \\ 3 & 1<t<2 \\ f(t+2) & \end{cases}$
ii. $\quad \mathrm{f}(\mathrm{t})=\left\{\begin{array}{lc}0 & -2<t<0 \\ 1 & 0<t<2 \\ \mathrm{f}(\mathrm{t}+4) & \end{array}\right.$
(2 marks)
c) Verify Gauss' theorem for the vector field
$\underline{F}=y^{2} j-x z k$ and the triangular prism with vertices at $(0,0,0),(2,0,0),(0,0,1),(0,4,0),(2$,
$4,0)$ and $(0,4,1)$

SECTION B - ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO

a) A function $\mathrm{f}(\mathrm{x})=x / 2$ over the interval $0<x<4 \pi$ and has period 2π.
i. Sketch a graph of $\mathrm{f}(\mathrm{x})$ in the interval $0<x<4 \pi$
ii. Obtain Fourier Series representation of $\mathrm{f}(\mathrm{x})$ in th interval $0<x<2 \pi$

QUESTION THREE

a) For the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ defined only in the $0<x<\pi$

Complete the definition of the above function $\mathrm{f}(\mathrm{x})^{2}, 0<t<\pi$ by defining it over $-\pi<t<0$ such that the resulting functions will have a Fourier Series containing
i. Only cosine terms
ii. Only sine terms

Obtain the half range Fourier Sine Series to represent $f(x)=x^{2} \quad 0<t<3$
b) Obtain a half-range Fourier Cosine Series to represent the function

$$
\mathrm{f}(\mathrm{t})=4-\mathrm{t} \quad 0<t<4
$$

QUESTION FOUR

a) Use Gauss' theorem to evaluate the surface integral $\iint_{s} \underline{F} . \underline{d s}$ where \underline{F} is the vector field $x^{2} y \underline{i}+2 x y \underline{j}+z^{3} \underline{k}$ and S is the surface of the unit cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$

