

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY ORDINARY EXAMINATION

2017/2018 ACADEMIC YEAR

THIRD YEAR **FIRST** SEMESTER EXAMINATION FOR THE DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

SEE 1301 – ENGINEERING MATHEMATICS V

DURATION: 2 HOURS

DATE: 26TH APRIL, 2018

TIME: 9.00 – 11.00 A.M.

Instructions to Candidates:

- 1. Answer Question 1 and Any Other Two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

QUESTION ONE

a) If $A = \begin{pmatrix} -3 & 0 \\ 7 & -4 \end{pmatrix} B = \begin{pmatrix} 2 & -1 \\ -7 & 4 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 0 \\ -2 & -4 \end{pmatrix}$ Determine 2A - 3B + 4C (4 marks) b) Evaluate $\begin{vmatrix} (1+j) & j2 \\ -i3 & (1+j4) \end{vmatrix}$ (4 marks)

c) Use laplace transforms to solve the differential equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 13y = 0$, given that when

x=0, y=3 and
$$\frac{dy}{dx} = 7$$
 (6 marks)

- d) Determine the laplace transform of Sin^2t (4 marks)
- e) Determine the inverse laplace transform of $\frac{4s-5}{s^2-s-2}$ (6 marks)
- f) Determine the Eigen value λ that satisfy the following equation

$$\begin{vmatrix} (5-\lambda) & 7 & -5 \\ 0 & (4-\lambda) & -1 \\ 2 & 8 & (-3-\lambda) \end{vmatrix} = 0$$
 (6 marks)

SECTION B - ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO

a) If A = $\begin{pmatrix} 3 & 4 & 0 \\ -2 & 6 & -3 \\ 7 & -4 & 1 \end{pmatrix}$ and B = $\begin{pmatrix} 2 & -5 \\ 5 & -6 \\ -1 & -7 \end{pmatrix}$

Determine A x B

b) Applying Kirchhoff's laws to an electric circuit results in the following equations

Solve the equations for I_1 and I_2

c) A d.c circuit comprises three closed loops. Applying Kirchhoff's laws to the closed loops give the following equations for current flow in milliamperes.

Use determinants to solve for I₁, I₂ and I₃

(8 marks)

(5 marks)

(7 marks)

QUESTION THREE

a) If
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$
Show that $A \ge B \ge A$ (4 marks)
b) Evaluate $\begin{vmatrix} 1 & 4 & -3 \\ -5 & 2 & 6 \\ -1 & -4 & 2 \end{vmatrix}$ (4 marks)

c) Show that

$$\mathcal{L}\left\{3e^{-1/2^{x}}\operatorname{Sin}^{2}x\right\} = \frac{48}{(2s+1)(4s^{2}+4s+17)}$$
(12 marks)

QUESTION FOUR

a) Determine the laplace transforms of: 5 = -3tc; + 2tc;

ii.
$$2e^{3t}(4\cos 2t - 5\sin 2t)$$
 (3 marks)

b) Solve the following pair of simultaneous differential equations

$$\frac{dy}{dx} + x = 1$$

$$\frac{dy}{dt} - y + 4e^{t} = 0$$

Given that at t = 0, x = 0 and y = 0 (14 marks)