MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY ORDINARY EXAMINATION

> 2017/2018 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

SEE 1301 - ENGINEERING MATHEMATICS V
DURATION: 2 HOURS
DATE: $26^{\text {TH }}$ APRIL, 2018
TIME: 9.00 - 11.00 A.M.

Instructions to Candidates:

1. Answer Question $\mathbf{1}$ and Any Other Two questions.
2. Mobile phones are not allowed in the examination room.
3. You are not allowed to write on this examination question paper.

SECTION A - ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE

a) If $\mathrm{A}=\left(\begin{array}{cc}-3 & 0 \\ 7 & -4\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{cc}2 & -1 \\ -7 & 4\end{array}\right)$ and $\mathrm{C}=\left(\begin{array}{cc}1 & 0 \\ -2 & -4\end{array}\right)$

Determine 2A - 3B +4C
b) Evaluate $\left|\begin{array}{cc}(1+\mathrm{j}) & \mathrm{j} 2 \\ -\mathrm{j} 3 & (1+\mathrm{j} 4)\end{array}\right|$
(4 marks)
c) Use laplace transforms to solve the differential equation $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+13 y=0$, given that when $\mathrm{x}=0, \mathrm{y}=3$ and $\frac{d y}{d x}=7$
d) Determine the laplace transform of $\operatorname{Sin}^{2} \mathrm{t}$
e) Determine the inverse laplace transform of $\frac{4 s-5}{s^{2}-s-2}$
f) Determine the Eigen value λ that satisfy the following equation
$\left|\begin{array}{ccc}(5-\lambda) & 7 & -5 \\ 0 & (4-\lambda) & -1 \\ 2 & 8 & (-3-\lambda)\end{array}\right|=0$
(6 marks)

SECTION B - ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO

a) If $A=\left(\begin{array}{ccc}3 & 4 & 0 \\ -2 & 6 & -3 \\ 7 & -4 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & -5 \\ 5 & -6 \\ -1 & -7\end{array}\right)$

Determine A x B
b) Applying Kirchhoff's laws to an electric circuit results in the following equations
$(9+j 12) I_{1}-(6+j 8) I_{2}=5$
$-(6+j 8) I_{1}+(8+j 3) I_{2}=(2+j 4)$
Solve the equations for I_{1} and I_{2}
c) A d.c circuit comprises three closed loops. Applying Kirchhoff's laws to the closed loops give the following equations for current flow in milliamperes.

$$
\begin{aligned}
2 \mathrm{I}_{1}+3 \mathrm{I}_{2}-4 \mathrm{I}_{3} & =26 \\
\mathrm{I}_{1} & -5 \mathrm{I}_{2}-3 \mathrm{I}_{3} \\
-7 \mathrm{I}_{1} & +2 \mathrm{I}_{2}+67 \\
& =12
\end{aligned}
$$

Use determinants to solve for I_{1}, I_{2} and I_{3}

QUESTION THREE

a) If $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$

Show that $\mathrm{A} \times \mathrm{B} \neq \mathrm{B} \times \mathrm{A}$
b) Evaluate $\left|\begin{array}{ccc}1 & 4 & -3 \\ -5 & 2 & 6 \\ -1 & -4 & 2\end{array}\right|$
c) Show that
$\mathcal{L}\left\{3 \mathrm{e}^{-1 / 2^{x}} \operatorname{Sin}^{2} \mathrm{x}\right\}=\frac{48}{(2 \mathrm{~s}+1)\left(4 \mathrm{~s}^{2}+4 \mathrm{~s}+17\right)}$
(12 marks)

QUESTION FOUR

a) Determine the laplace transforms of:
i. $5 \mathrm{e}^{-3 \mathrm{t}} \operatorname{Sinh} 2 \mathrm{t}$
(3 marks)
ii. $2 e^{3 t}(4 \operatorname{Cos} 2 t-5 \operatorname{Sin} 2 t)$
b) Solve the following pair of simultaneous differential equations

$$
\begin{aligned}
& \frac{d y}{d x}+x=1 \\
& \frac{d y}{d t}-y+4 e^{t}=0
\end{aligned}
$$

Given that at $\mathrm{t}=0, \mathrm{x}=0$ and $\mathrm{y}=0$

