

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY ORDINARY EXAMINATION

2017/2018 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATION FOR THE DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

SEE 1202 – ANALOGUE ELECTRONICS II

DURATION: 2 HOURS

DATE:

TIME:

Instructions to Candidates:

- 1. Answer **Question 1** and **Any Other Two** questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A - ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE

- a) Explain the following classes of amplifiers:
 - i. Class-A amplifier
 - ii. Class-B amplifier
 - iii. Class-C amplifier
 - iv. Class-AB amplifier (4 marks)
- b) In a class B amplifier, $V_{CE}(min)=2V$ and Vcc=15V. Calculate its overall efficiency. (3 marks)
- c) State two advantages of RC coupling. (2 marks)
- d) State two advantages of negative feedback. (2 marks)
- e) Define the term distortion as used in amplifiers. (2 marks)
- f) An amplifier has an open-loop gain of 400 and a feedback of 0.1. If open-loop gain changes by 20% due to temperature, find the percentage change in closed-loop gain. (3 marks)
- g) A differential amplifier has an open-loop gain of 150 and a common input signal of 4.0V to both terminals. If an output signal of 15mV results, determine:
 - i. Common-mode gain and
 - ii. Common-Mode Rejection Ratio (CMRR) (4 marks)
- h) A filter section is required to pass all frequencies above 50kHz and to have a nominal impedance of 300 Ω . Design a high-pass π -section filter to meet these requirement. (6 marks)
- i) Define the following terms as used in oscillators:
 - i. Damped oscillations
 - ii. Undamped oscillations (4 marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO

- a) State four applications of Silicon-Controlled Rectifiers (SCRs) (4 marks)
 b) Using appropriate diagrams, show each of the following types of waveforms:

 Sine waveform
 Saw-tooth waveform
 - iii. Pulse waveform (6 marks)

c) Design an OP-amp that will produce an output equal to $-(4V_1+V_2+0.1V_3)$. Write an expression for the output and sketch its output when V₁=2Sin ω t, V₂=+5Vd.c. and V₃=100Vd.c. (10 marks)

QUESTION THREE

- a) Distinguish between linear and non-linear distortion. (4 marks)
 b) Define the following terms as used in filter networks:

 Attenuation
 Cut-off frequency, *f c*Nominal impedance, Ro

 c) The parameters of a crystal oscillator equivalent circuit are L₁=0.8H; C₁=0.08pF; f=5kHz and C₂=1.0pF. Determine the resonant frequency *f*₁. (3 marks)
- d) For the single stage Common-Emitter (CE) amplifier shown in figure 1, $R_B=1M\Omega$, $R_c=10k\Omega$, $V_{cc}=20V$, $R_L=10k\Omega$, and $\beta = 50$.

Calculate:

- i. V_{in}
- ii. r_o
- iii. A_i
- iv. A_v
- v. Gp in dB

QUESTION FOUR

- a) In a negative feedback feedback amplifier, A=50, $\beta = 0.05$ and $V_i = 100$ mV. Find:
 - i. Gain with feedback, A
 - ii. Output voltage, Vo
 - iii. Feedback factor
 - iv. Feedback voltage
- b) Define the following OP-amp parameters:
 - i. Input bias current
 - ii. Slew rate (4 marks)
- c) For the differential amplifier shown in figure 2, determine the output voltage, V_o if:
 - i. $V_1=4mV$ and $V_2=0$
 - ii. V_1 =40mV and V_2 =30mV

(8 marks)

(8 marks)