MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY ORDINARY EXAMINATION
2017/2018 ACADEMIC YEAR
SECOND YEAR FIRST SEMESTER EXAMINATION FOR THE DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING

SEE 1202 - ANALOGUE ELECTRONICS II
DURATION: 2 HOURS
DATE:
TIME:

Instructions to Candidates:

1. Answer Question $\mathbf{1}$ and Any Other Two questions.
2. Mobile phones are not allowed in the examination room.
3. You are not allowed to write on this examination question paper.

SECTION A - ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE

a) Explain the following classes of amplifiers:
i. Class-A amplifier
ii. Class-B amplifier
iii. Class-C amplifier
iv. Class-AB amplifier
b) In a class B amplifier, $\mathrm{V}_{\mathrm{CE}}(\mathrm{min})=2 \mathrm{~V}$ and $\mathrm{Vcc}=15 \mathrm{~V}$. Calculate its overall efficiency. (3 marks)
c) State two advantages of RC coupling.
d) State two advantages of negative feedback.
e) Define the term distortion as used in amplifiers.
f) An amplifier has an open-loop gain of 400 and a feedback of 0.1 . If open-loop gain changes by 20% due to temperature, find the percentage change in closed-loop gain.
g) A differential amplifier has an open-loop gain of 150 and a common input signal of 4.0 V to both terminals. If an output signal of 15 mV results, determine:
i. Common-mode gain and
ii. Common-Mode Rejection Ratio (CMRR)
h) A filter section is required to pass all frequencies above 50 kHz and to have a nominal impedance of 300Ω. Design a high-pass π-section filter to meet these requirement.
i) Define the following terms as used in oscillators:
i. Damped oscillations
ii. Undamped oscillations

SECTION B - ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO

a) State four applications of Silicon-Controlled Rectifiers (SCRs)
b) Using appropriate diagrams, show each of the following types of waveforms:
i. Sine waveform
ii. Saw-tooth waveform
iii. Pulse waveform
c) Design an OP-amp that will produce an output equal to $-\left(4 \mathrm{~V}_{1}+\mathrm{V}_{2}+0.1 \mathrm{~V}_{3}\right)$. Write an expression for the output and sketch its output when $V_{1}=2 \operatorname{Sin} \omega t, V_{2}=+5 \mathrm{Vd} . \mathrm{c}$. and $\mathrm{V}_{3}=100 \mathrm{Vd} . c$. (10 marks)

QUESTION THREE

a) Distinguish between linear and non-linear distortion.
b) Define the following terms as used in filter networks:
i. Attenuation
ii. Cut-off frequency, $f c$
iii. Nominal impedance, Ro
c) The parameters of a crystal oscillator equivalent circuit are $\mathrm{L}_{1}=0.8 \mathrm{H} ; \mathrm{C}_{1}=0.08 \mathrm{pF} ; \mathrm{f}=5 \mathrm{kHz}$ and $\mathrm{C}_{2}=1.0 \mathrm{pF}$. Determine the resonant frequency f_{1}.
d) For the single stage Common-Emitter (CE) amplifier shown in figure $1, \mathrm{R}_{\mathrm{B}}=1 \mathrm{M} \Omega, \mathrm{Rc}=10 \mathrm{k} \Omega$, $\mathrm{V}_{\mathrm{cc}}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, and $\beta=50$.

Calculate:
i. $\quad V_{i n}$
ii. r_{0}
iii. A_{i}
iv. A_{v}
v. Gp in dB

QUESTION FOUR

a) In a negative feedback feedback amplifier, $\mathrm{A}=50, \beta=0.05$ and $V_{i}=100 \mathrm{mV}$. Find:
i. Gain with feedback, A
ii. Output voltage, Vo
iii. Feedback factor
iv. Feedback voltage
b) Define the following OP-amp parameters:
i. Input bias current
ii. Slew rate
c) For the differential amplifier shown in figure 2, determine the output voltage, V_{o} if:
i. $\quad V_{1}=4 \mathrm{mV}$ and $\mathrm{V}_{2}=0$
ii. $\mathrm{V}_{1}=40 \mathrm{mV}$ and $\mathrm{V}_{2}=30 \mathrm{mV}$ (8 marks)

