SCHOOL OF PURE AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

SMA 260: PROBABILITY AND STATISTICS I

PAST PAPER.

QUESTION ONE

a) Outline four characteristics of the normal probability distribution.

b) A discrete random variable *x* has a probability function given by:

x	0	1	2	3	4	5
f(x)	0.10	0.15	0.30	0.25	0.15	0.05
i) Show th	hat the fund	tion $f(\mathbf{r})$ is	a probability m	hass function(r	omf)	

ii) Determine the mean and variance of the random variable x in the probability distribution. (6mks)

iii)Determine the probability that x is at least 3. (2mks)

c) A discrete random variable x has a Poisson probability distribution with probability mass function(p.m.f) given by:

$$f(x) = -\begin{cases} \frac{\lambda^{x} e^{-\lambda}}{x!} & \text{for } x = 0, 1, 2, 3, \dots, n. \\ 0 & ; & \text{elsewhere} \end{cases}$$

Prove that the mean of x and the variance of x are both equal to λ

(6mks)

(2mks)

(2mks)

d) A continuous random variable χ is given by the function.

i) Show that the function f(x) is a probability density function(p.d.f)

ii) Hence determine the probability: $P(\frac{1}{2} \le x \le 1)$. (4mks)

e) A continuous random variable x given by the probability density function 1

$$f(x) = - \begin{cases} \frac{1}{2}(x+1); & \text{for } -1 \le x \le 1 \\ 0 & \text{elsewhere} \end{cases}$$

Determine the variance of (5x + 10)

f) A continuous random variable x is normally distributed with parameters mean $\mu = 10$ and variance $\sigma^2 = 36$. Determine the probability: $P(4 \le x \le 6)$. (4mks)

(4mks)

(10mks)

QUESTION TWO

A continuous random variable x is given by the function

$$f(x) = -\begin{cases} \frac{2}{9} (9 \ x - x^2 - 18) & \text{; for } 3 \le x \le 6\\ 0 & \text{elsewhere} \end{cases}$$

a) Show that the function
$$f(x)$$
 is a probability density function(p.d.f) (3mks)
b) Determine the following measures about the random variable x in the probability distribution;
i) The mode of x ;
ii) The mean of x ;
iii) The variance of x ;
iii) The variance of x ; (13mks)
Determine the following probability from the distribution:
 $p(2 \le x \le 5)$ (4mks)

QUESTION THREE

a) The national transport and safety authority claims that only 60% of the drivers on the Kenyan roads are trained in driving schools. A random sample of 12 drivers on the road was taken from Kenya. Determine the probability that among these drivers the following were trained in a driving school:

i) exactly 5

ii) At least 4 drivers

iii) Between 4 and 6 drivers inclusive

b) The daily water usage of residents of Thika town has been found to be normally distributed with a mean of 20 gallons and a standard deviation of 5 gallons:

i) Determine the probability that a resident selected at a random will use less than 15 gallons of water per day;(3mks)

ii) Determine the probability that the resident selected at random will use more than 30 gallons of water per day; (3mks)
 iii) Determine the percentage proportion of Thika residents who use between 25 and 30 gallons per day. (4mks)

QUESTION FOUR

a) Outline three characteristics of the binomial probability distribution.

b) The number of people who become ill each year from eating a kind of poisonous plant in a certain region has been found to have a Poisson probability distribution with rate parameter $\lambda = 1.6$. Determine the probability of obtaining at random the following number of people who have fallen ill from the plant in a given year:

i) Exactly 2 people;ii) At least 7 people;

(7mks)

(3mks)

- c) The operational lifespan of a given brand of a photocopying machines has been found to be normally distributed with a mean of 4.8 years and a standard deviation of 1.6 years.
- i) Determine the proportion of these photocopying machines that will have a lifespan of between 3.8 years and 6.6 years; (4mks)
- ii) if this photocopying machines have a warranty period of 2 years, determine the proportion that the original sales which will require replacement through this warranty.
 (3mks)
- iii) If the manufacturer of these photocopying machines wants only 5% of the machines to be replaced through this warranty, Determine the warranty period that should be set to achieve this. (3mks)

QUESTION FIVE

a) A continuous random variable χ has a probability density function given by:

$$f(x) = \begin{cases} xe^{-x}; & \text{for } x > 0\\ 0 & \text{elsewhere} \end{cases}$$

i) Determine the moment generating function of $\boldsymbol{\chi}\,$.

ii) Hence determine the mean and variance of $\ x$.

b) A continuous random variable $\pmb{\chi}$ has a probability density function given by:

$$f(x) = -\begin{bmatrix} 2x ; & \text{for } 0 \le x \le 1 \\ 0 & \text{elsewhere} \end{bmatrix}$$

i) Determine the probability density function of a continuous random variable $y = 8x^3$

using the change of variable technique.

ii) Hence determine the following:

- I. The mean of y
- II. The probability p(y > 4)

(5mks)

(10mks)

(5mks)