KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2011/2012 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF SCIENCE IN TELECOMMUNICATION

MATH 210: ENGINEERING MATHEMATICS II

DAY: WEDNESDAY

DATE: 01/08/2012

TIME: 9.00 – 11.00 A.M.

STREAM: Y2S1

INSTRUCTIONS:

\triangleright	Answer	Question	ONE	and any	other	TWO	Questions
------------------	--------	----------	-----	---------	-------	-----	-----------

QUESTION ONE (30 MARKS)

a)	Let the matrix and the matrix			. Find the		
	matrix	and hence or otherwise solve the system				
				(8 marks)		
b)	State De Moivre's theorem for positive integral index and use it to prove that					
	$\sin 3\phi = 3\cos^2 \phi$	$\varphi \sin \varphi - \sin^2 \varphi$		(5 marks)		
c)	c). Find the vol	ume of the Tetrahedron with sides	given by			
		and		(6 marks)		
d)	Let $\dim_R V = 2$	and define T on V by				
	$v_1 T = a v_1 + b v_2$					
	$v_2T = xv_1 + yv_2$,				

where $a, b, x, y \in R$. In terms of a, b, x, y, find necessary and sufficient conditions that T have two distinct eigenvalues in R. (5 marks)

(6 marks)

e) Find all the 5^{th} roots of unity

QUESTION TWO (20 MARKS)

a)	Let the mappi	ng	and	defined by,	and
		Find			
	i.				
	ii.				
	iii.	f(f(f(2, 5)))			
	iv.				(9 marks)
b)	Find the area	of a triangle th	at has the	e vertices	
					(5 marks)

c) If $\tilde{A} = xz^3 \hat{i} - 2x^2 yz \hat{j} + 2yz^4 \hat{k}$ find $\nabla \times \tilde{A}$ at (1, -1, 1). (6 marks)

QUESTION THREE (20 MARKS)

a) Evaluate $\int_{C} \frac{(1-2z)dz}{z(z-1)(z-2)^2}$ where C is a positively oriented circle . (5 marks)

b) Let $F: R^2 \rightarrow R^2$ be defined by F(x, y) = (2x + 3y, 4x - 5y). Find the T of F relative to the basis $S = (u_1, u_2) = \{(1, -2), (2, -5)\}$ (6 marks)

c) Consider the space curve $x = 3\cos t$, $y = 3\sin t$, z = 4t.

Find i). The unit tangent \hat{T}

- ii). The principal normal \hat{N}
- iii). Curvature k and radius of curvature ρ
- iv). The Binormal \hat{B}
- v). Torsion τ and radius of torsion σ (9 marks)

QUESTION FOUR (20 MARKS)

a) Use Cramers rule to solve the system

(12 marks)

b) If $\tilde{A} = \cos xy\hat{i} + (3xy - 2x^2)\hat{j} - (3x + 2y)\hat{k}$ show that — (4 marks)

c) If $F(z) = \frac{3z+1}{(z-4)(z-1)}$, find the poles and residues at the poles for F(z). (4 marks)

QUESTION FIVE (20 MARKS)

- a) Show that if is analytic inside and on a simple closed curve C and *a* is any point inside C then (7 marks)
- b) A particle moves along the curve $\tilde{r} = (t^3 4t)\hat{i} + (t^2 + 4t)\hat{j} + (8t^2 3t^3)\hat{k}$, where t is the time. Find the magnitude of the tangential and normal components of its acceleration when .

c) Given that matrix
$$A = \begin{pmatrix} -7 & 3 \\ 5 & 1 \end{pmatrix}$$
 and matrix $B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$, find where;