MATH 210: ENGINEERING MATHEMATICS II
DAY: WEDNESDAY
DATE: 01/08/2012
TIME: 9.00 - 11.00 A.M.
STREAM: Y2S1

INSTRUCTIONS:

> Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)
a) Let the matrix
and the matrix
. Find the
matrix and hence or otherwise solve the system
b) State De Moivre's theorem for positive integral index and use it to prove that
$\sin 3 \phi=3 \cos ^{2} \phi \sin \phi-\sin ^{3} \phi$
c) c). Find the volume of the Tetrahedron with sides and
(5 marks)
given by
(6 marks)
d) Let $\operatorname{dim}_{R} V=2$ and define T on V by
$v_{1} T=a v_{1}+b v_{2}$ $v_{2} T=x v_{1}+y v_{2}$,
where $a, b, x, y \in R$. In terms of a, b, x, y, find necessary and sufficient conditions that T have two distinct eigenvalues in R .
e) Find all the $5^{\text {th }}$ roots of unity

QUESTION TWO (20 MARKS)

a) Let the mapping and defined by, and

Find

i.
ii.
iii. $f(f(f(2,5)))$
iv.
b) Find the area of a triangle that has the vertices
c) If $\tilde{A}=x z^{3} \hat{i}-2 x^{2} y z \hat{j}+2 y z^{4} \hat{k}$ find $\nabla \times \tilde{A}$ at $(1,-1,1)$.

QUESTION THREE (20 MARKS)

a) Evaluate $\int_{C} \frac{(1-2 z) d z}{z(z-1)(z-2)^{2}}$ where C is a positively oriented circle
b) Let $F: R^{2} \rightarrow R^{2}$ be defined by $F(x, y)=(2 x+3 y, 4 x-5 y)$. Find the T of F relative to the basis $S=\left(u_{1}, u_{2}\right)=\{(1,-2),(2,-5)\}$
c) Consider the space curve $x=3 \cos t, y=3 \sin t, z=4 t$.

Find i). The unit tangent \hat{T}
ii). The principal normal \hat{N}
iii). Curvature k and radius of curvature ρ
iv). The Binormal \hat{B}
v). Torsion τ and radius of torsion σ

QUESTION FOUR (20 MARKS)

a) Use Cramers rule to solve the system
b) If $\tilde{A}=\cos x y \hat{i}+\left(3 x y-2 x^{2}\right) \hat{j}-(3 x+2 y) \hat{k}$ show that - - (4 marks)
c) If $F(z)=\frac{3 z+1}{(z-4)(z-1)}$, find the poles and residues at the poles for $F(z) .(4$ marks $)$

QUESTION FIVE (20 MARKS)

a) Show that if is analytic inside and on a simple closed curve C and a is any point inside C then \qquad (7 marks)
b) A particle moves along the curve $\tilde{r}=\left(t^{3}-4 t\right) \hat{i}+\left(t^{2}+4 t\right) \hat{j}+\left(8 t^{2}-3 t^{3}\right) \hat{k}$, where t is the time. Find the magnitude of the tangential and normal components of its acceleration when
c) Given that matrix $A=\left(\begin{array}{cc}-7 & 3 \\ 5 & 1\end{array}\right)$ and matrix $B=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$, find \quad where;

