UNIVERSITY EXAMINATIONS
 2013/2014 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

MATH 121: CALCULUS 11

DAY: FRIDAY
DATE: 18/04/2014
TIME: 10.00-1.00 P.M.
STREAM: Y1S1

INSTRUCTIONS:

> Answer question ONE and any other TWO

QUESTION ONE (30MKS)
a) (i) A curve passes through the point $(3,-2)$ and its gradient function is $2 x+5$. Find its equation (3Mks)
(ii) Evaluate $\int \frac{x^{2}}{1-4 x^{5}} \mathrm{dx}$
b) i. Prove that $\int \tan x d x=\ln |\operatorname{sex}|+c$
ii. Evaluate $\int_{0}^{2} \frac{1}{x^{3}} d x$
c) (i) Use integration by parts to evaluate $\int x^{2} e^{x} d x$
(ii) Evaluate $\int \log x d x$
(2Mks)
d) (i) Find $\int \frac{-2 x}{(x+1)\left(x^{2}+1\right)} d x$
(3Mks)
(ii) Evaluate $\int \frac{z^{\sqrt{x}}}{\sqrt{x}}$
e) (i) Evaluate $\int \frac{1}{\sqrt{a^{2}-b^{2} x^{2}}} d x$
(ii) Evaluate $\int \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
(3Mks)

QUESTION TWO (20MARKS

a) (i) Evaluate $\int \frac{x^{5}}{5+x^{6}} d x$
(ii) Evaluate the definite integral

$$
\begin{equation*}
\int_{1}^{5} \frac{x}{\sqrt{2 x-1}} d x \tag{4Mks}
\end{equation*}
$$

b) A curve has equation $8 \mathrm{y}=-\frac{2}{x}-x^{4}$ show that $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=1 / 2\left(1 / x^{3}+x^{3}\right)$ Hence find the length of the curve from $x=1$ to $x=4$
c) Evaluate $\int \cos ^{2} x \sin d x$
d) Evaluate $\frac{\operatorname{sit}^{2} x}{1-\tan x} d x$

QUESTION THREE (20MARKS)

a) Estimate the area under the curve $\mathrm{y}=\frac{2 x}{2 x^{2}+1}$ between $\mathrm{x}=0$ and $\mathrm{x}=1$ using $\mathrm{n}=6$ by
i. Trapezoidal rule
ii. Simpson's rule
(10Mks)
b) Integrate $\int \cos ^{2} x d x$
c) Integrate by parts $\int x^{2} \ln x d x$

QUESTION FOUR (20MARKS)

a) Evaluate $\int e^{2 x} \sin x d x$
b) Find the area of the surface generated by revolving about x -axis the arc of the curve $\mathrm{y}=x^{3}$

$$
\text { on }(0,1)
$$

(5Mks)
c) Find the volume of the solid generated revolving about x - axis the region bounded by

$$
\begin{equation*}
\mathrm{y}=\sqrt{x} \text { and } \mathrm{y}=\mathrm{x} \tag{6Mks}
\end{equation*}
$$

d) Evaluate $\int \frac{x^{2}}{m^{5}-3 x^{2}-3 x+27} \mathrm{dx}$
(4Mks)

QUESTION FIVE (20MARKS)

a) Find the length of the curve $y=\frac{1}{8} x^{4}+\frac{1}{4 x^{2}}$ from $x=1$ to $x=2$
(6mks)
b) Find the area of the region bounded by the curves $y=x^{2}$ and $y=-x^{2}+6 x$
c) Resolve $\frac{2 x^{2}+x^{2}-6 x+7}{x^{2}+x-6}$ into partial fractions hence evaluate its integral (4Mks)
d) Find the surface area of revolution of a parallel $y^{2}=x$ from $(1,1)$ to $(4,2)$ about the x - axis (4Mks)

