UNIVERSIIY

UNIVERSIIYEXAMINATIONS
 2013 / 2014 ACADEMIC YEAR
 FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

MATH 113: CALCULUS (58 STUDENTS)

DAY:

DATE:
TIME: 2Hrs
STREAM: Y1S1

INSTRUCTIONS:
Answer Question One And Any Other Two Questions

QUESTION ONE - (30 MARKS)

a) State the $\varepsilon-\delta$ definition of a limit of a function $f(x)$ as x approaches a point $x=a$ and use it to prove that $\lim _{x \rightarrow 2}(2 x-1)=3$
(4 marks)
b) Let $f(x)= \begin{cases}x^{2} & x<1 \\ 4 & x=1 \\ 2 x-1 & x>1\end{cases}$
(i) Graph f
(ii) Evaluate $\lim _{x \rightarrow 1^{-}} f(x)$ and $\lim _{x \rightarrow 1^{+}} f(x)$
(iii) Is the function continuous at $x=1$? Explain.
(6 marks)
c) Use the first principle method to differentiate $f(x)=\sqrt{2 x+1}$ with respect to x.
(5 marks)
d) Find $\frac{d y}{d x}$ if:
i) $y=(\sin 3 x)^{\cos 3 x}$
ii) $y=\frac{1+e^{x^{2}}}{1-e^{3 x}}$
e) Find the equation of the tangent to the curve $x^{2}+y^{2}=y$ at point $(1,1)$ (3 marks)
f) Deduce product rule of differentiation

QUESTION TWO - (20 MARKS)

a) Determine whether $\mathrm{y}=\mathrm{Ae}^{a \mathrm{ax}}+\mathrm{Be}^{-\mathrm{ax}}$ is satisfied by $\mathrm{y}^{11}-\mathrm{a}^{2} \mathrm{y}=0$.
(b) Write the equation of the tangent and normal to the curve:

$$
x^{5}+y^{5}-2 x y=0 \text { at a point }(1,1)
$$

(c) Investigate the local extrema of the function.

$$
f(x)=2 x^{3}-3 x^{2}-12 x+5
$$

(d) The gradient of a curve is $4 x-2$. Find the equation of the curve given x - axis is a tangent to the curve.
(e) Find the radius of a cylindrical tank given that the volume is $16 \pi(\mathrm{mls})$ if the area have to be least.
(f) A ball was thrown upwards with a velocity of $40 \mathrm{~m} / \mathrm{s}$; find the acceleration ,velocity and distance expression, hence find the maximum height the ball can attain.

QUESTION THREE - (20 MARKS)

a) Show that the function $f(x)=\left\{\begin{array}{cc}2 x+3, & x<0 \\ x+3, & x \geq 0\end{array}\right\}$ is not differentiable at $x=0$
b) Given that $y=\frac{1}{1-x}$ show that:
(i) $\frac{d y}{d x}=y^{2}$
(ii) $\frac{d^{2} y}{d x^{2}}=y^{3}$
(iii) $\frac{d^{3} y}{d x^{3}}=y^{4}$
(iv) Hence find the constant a and b such that $\frac{d^{20} y}{d y^{20}}=\frac{a}{y^{b}}$ (3 marks)
c) If $y=\frac{\cos x}{x}$, prove that $\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+y=0$
(7 marks)

QUESTION FOUR - (20 MARKS)

a) Find the expression for $\frac{d y}{d x}$ given that
(i) $y=3 x^{7}-7 x^{3}+4 x-21$ (2 marks)
(ii) $y=\operatorname{In}\left(\sqrt{x^{2}+1-x}\right)$ (2 marks)
(iii) $y=\frac{\sin x}{1-\cos x}$
(4 marks)
(iv) $y=\tan ^{-1}\left(\frac{x+1}{x-1}\right)$
b) By differentiating implicitly find $\frac{d y}{d x}$ given that
(i) $y^{3}-3 x^{2} y+2 x^{3}=0$
(4 marks)
(ii) $\operatorname{In} x y=e^{x+y}$ (3 marks)

QUESTION FIVE - (20 MARKS)

a) Let $f(x)=-2 x^{4}+6 x^{2}-3$. Find the extreme values of f, and sketch the graph of f. (6 marks)
b) A crate open at the top has vertical sides, a square bottom, and a volume of 4 cubic meters. If the crate has the least possible surface area, find its dimensions. (5 marks)
c) Use L'Hospital's rule to find
(i) $\lim _{x \rightarrow \infty} \frac{\operatorname{In} x}{x}$
(2 marks)
(ii) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{3}-x-3}$
(3 marks)
(iii) $\lim _{x \rightarrow 0}\left(\frac{e^{x}-e^{-x}-2 x}{x-\sin x}\right)$
(4 marks)

