KABARAK



UNIVERSITY

# UNIVERSITY EXAMINATIONS

## 2009/2010 ACADEMIC YEAR

### FOR THE DEGREE OF BACHELOR OF COMPUTER

### SCIENCE

| <b>COURSE CODE:</b>  | MATH 121           |
|----------------------|--------------------|
| <b>COURSE TITLE:</b> | INTERGRAL CALCULUS |
| STREAM:              | Y1S2               |
| DAY:                 | FRIDAY             |
| TIME:                | 2.00 – 4.00 P.M.   |
| DATE:                | 04/12/2009         |

### **INSTRUCTIONS:**

- i) Answer question ONE and any other TWO questions
- ii) Begin each question on a separate page
- iii) Show your workings clearly and neatly.

#### PLEASE TURN OVER

### **QUESTION ONE (30 MARKS) COMPULSORY**

(a) i) 
$$\int 3e^x + 5\cos x - 10\sec^2 x dx$$
 (4 mks)  
ii)  $\int 2\sec w \tan w + \frac{1}{6w} dw$  (4 mks)

(b) Use the simpsons Rule with n=4 to estimate  

$$\int_{0}^{1} 5x^{4} dx$$
 and compare with exact value of the integral (4 mks)  
(c) Evaluate the following integrals by substitution method

(i) 
$$\int \cos(4x+5)dx$$
 (3 mks)

(iii) 
$$\int x e^{-x^2} dx$$
 (3 mks)

(d) Integrate 
$$\int x^4 e^{\frac{x}{2}} dx$$
 by parts (4 mks)

(e) (e) Find the area of the region enclosed by 
$$y = x^2$$
 and  $y = \sqrt{x}$  (4 mks)

| (f) Determine     | the volu | me of the solid obtained by rotation the region bounded l | by      |
|-------------------|----------|-----------------------------------------------------------|---------|
| $y = \sqrt[3]{x}$ | x = 8    | and the x-axis about the x-axis                           | (4 mks) |

### **QUESTION TWO** (20 MARKS)

| (a) Integrate the following by parts      |         |
|-------------------------------------------|---------|
| (i) $\int e^{\theta} \cos \theta d\theta$ | (6 mks) |
|                                           |         |

(ii) 
$$\int w^2 \sin(10w) dx$$
 (6 mks)

(b) Evaluate 
$$\int \frac{x^2 - 29x + 5dx}{(x-4)^2(x^2+3)}$$
 (5 mks)

(c) Find 
$$\frac{df}{dy}$$
 if  $f(x,y) = y\sin xy$  (3 mks)

### **QUESTION THREE (20 MKS)**

(a) Determine the reduction formula for 
$$I_m = \int \cos^m x dx$$
  
Use the result to determine  $I_7$  (10 mks)

(b) Approximate 
$$\int_{0}^{2} \frac{1}{x^{2}+1}$$
 with n = 4 using  
(i) Trapezoidal Rule (5 mks)  
(ii) Simpson's Rule (5 mks)

### **QUESTION FOUR (20 MKS)**

(a) Evaluate 
$$\int \frac{1}{2x^2 - 12x + 21} dx$$
 (10 mks)

(b) Evaluate the following integrals

(i) 
$$\int 3x^2 \sqrt{x+4} \, \mathrm{dx}$$
 (6 mks)

(ii) 
$$\int \sqrt{\tan x} \sec^2 x dx$$
 (4 mks)

#### **QUESTION FIVE (20 MARKS)**

(a) Determine the area of the region bounded by  $y = 2x^2 + 10$ , y = 4x + 16, x = -2 and x = 5

(b) Find the length of the curve 
$$y = \left(\frac{x}{2}\right)^{\frac{2}{3}}$$
 from  $x = 0$  to  $x = 2$  (5 mks)

(c) Evaluate the following (i)  $\int \cos^5 \theta d\theta$  (8 mks) (ii)  $\int \cos^2 \theta d\theta$