

EXAMINATIONS

2008/2009 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: MATH 121
COURSE TITLE:
CALCULUS II
STREAM:DAY:TIME:2.00-4.00 P.M.DATE:09/04/2009
INSTRUCTIONS:

Answer question ONE and any other TWO

QUESTION ONE (30MARKS)

(a) Evaluate the following integrals
(i) $\int x \sin \left(x^{2}\right) d x$
(ii) $\int \operatorname{In} x d x$
(iii) $\int \frac{x+2}{1-x} d x$
(b) Find the solution to the differential equation

$$
\left(1+x^{2}\right) \frac{d y}{d x}+x e^{-y}=0, \text { given that } x=0, y=1
$$

(c) Find the area between the curve $y^{2}=x$ and the line $x=2$
(d) Use the trapezoidal rule with $\mathrm{n}=4$ to estimate $\int_{1}^{2} x^{2} d x$ and calculate the difference between the estimate and the exact answer.
(e) Find the length of the curve

$$
\begin{equation*}
\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}} \text { between } x=0 \text { and } x=3 \tag{6marks}
\end{equation*}
$$

QUESTION TWO (20MARKS)

(a) Integrate by parts with respect to x

$$
x^{2} \sin x
$$

(b) Use partial fractions to evaluate $\int_{3}^{5} \frac{2}{x^{2}-1} d x$
(c) Use the substitution methods to solve

$$
\begin{aligned}
& \text { (i) } \int \frac{d x}{\sqrt{\left(4-x^{2}\right)}} \\
& \text { (ii) } \int_{0}^{1} x\left(1+x^{2}\right)^{\frac{3}{2}} d x
\end{aligned}
$$

QUESTION THREX (20MARKS)

(a) Resolve $\frac{x^{3}+x^{2}+x+2}{x^{4}+3 x^{2}+2}$ into partial fractions. Hence evaluate

$$
\int \frac{x^{3}+x^{2}+x+2}{x^{4}+3 x^{2}+2} d x\left[\text { Hint: } x^{2}+1 \text { is a factor of } x^{4}+3 x^{2}+2\right] . \quad \text { (10 marks) }
$$

(b) Evaluate $\int_{1}^{2} \frac{d x}{x^{2} \sqrt{(x-1)}}$ by means of substitution $x=\sec ^{2} \theta$.

QUSTION FOUR (20MARKS)

(a) If $I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x$, Prove that for $n \geq 2$
$I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1}$. Hence calculate the value of
$\int_{0}^{\frac{\pi}{2}} x^{5} \sin x d x$.
(14 marks)
(b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{3} x d x$.
(6 marks)

QUESTION RVE (20 MARKS)

(a) Find the volume generated when the area enclosed by the x-axis and the curve

$$
y=3 x^{2}-x^{3} \text { is rotated about x-axis. }
$$

(b) Tabulate to 3 decimal places the values of the function $f(x)=\frac{1}{x}$ for values of x from 1 to 2 at intervals of 0.1 .
(c) Use the values in (a) above to estimate $\int_{0}^{1} \frac{1}{x} d x$ by
(i) Trapezoidal rule (ii) Simpson's rule (8 marks)
(c) Evaluate $\int_{1}^{2} \frac{1}{x} d x$ by integration. Hence determine the percentage error in the values obtained in (b) above.

