Name...... Adm No......Class......

121/2 Mathematics Paper 2 2 ¹/₂ Hours MAY 2015

TIGANIA SOUTH PRE-MOCKS 2015

Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- Write your name and Admission number in the spaces provided at the top of this page.
- This paper consists of two sections: Section I and Section II.
- Answer ALL questions in section 1 and ONLY FIVE questions from section II
- All answers and workings must be written on the question paper in the spaces provided below each question.
- Show all the steps in your calculation, giving your answer at each stage in the spaces below each question.
- Non Programmable silent electronic calculators and KNEC mathematical tables may be used, except where stated otherwise.

FOR EXAMINERS USE ONLY

SECTION I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	TOTAL

SECTION II

GRAND TOTAL

17	18	19	20	21	22	23	24	TOTAL

SECTION I (50 MARKS)

1. Use logarithm tables to solve;

 $\sqrt[3]{\frac{45.23 \times 0.1122}{6394}}$

(4mks)

2. Solve for θ in the equation sin $(4\theta + 10^\circ)$ -cos $(\theta + 70^\circ) = 0$ (3mks)

- 3. A quantity K is partly constant and partly varies as M. When K = 45, M = 20, and when K = 87, M = 48
- a) Find the formulae connecting K and M (1mk)

b) Find K when M = 36

(2mk)

4. (i) Expand $(2x-1)^5$ in ascending powers of x

(1mk)

(ii) Hence use your expansion up to the third term to evaluate $(-0.98)^5$ (2mks)

5. Find the equation of the normal to the curve $y = x^2 + 4x - 3$ at point (1, 2). (3mks)

6. Using a ruler and a pair of compass only, construct triangle ABC in which BC is 6.6cm, AC=3.8cm and AB= 5.6cm. Locate point E inside triangle ABC which is equidistant fromponts A, and C such that angle AEC= 90^{0} . (3mks)

7. Solve the following trigonometric equation $2\cos 2(x+30) = 1$ for $0 \le x \le 360^{\circ}$ (3 mks)

8. The position vectors of A and B are given as $\mathbf{a} = 2\mathbf{i} \cdot 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{b} = -2\mathbf{i} \cdot \mathbf{j} + 2\mathbf{k}$ respectively. Find to 2decimal places, the length of the vector \overrightarrow{AB} . (3mks)

9. A T.V set was bought on hire purchase. A down payment (deposit) of Ksh 5000 was paid and a 15 monthly installment of Kshs 1500 was required.

a) Calculate the total amount paid on hire purchase

b) If the hire purchase payment is 20% than cash payment, find the cash price (2mks)

10. The figure below shows a triangle ABC inscribed in a circle. AC = 10cm, BC = 7cm and AB = 10cm. Find the radius of the circle. (Leave your answer to the nearest 1 decimal place)

(3mks)

(1mks)

11. The floor of a rectangular room measures 4.8m by 3.2m. Estimate the percentage error in the area.

(3mks)

12. Simplify without using mathematical tables or a calculator

(3mks)

log 16 + log	81
$\log 8 + \log$	27

13. Rationalize the denominator fully and simplify, leaving your answer in surd form. (3mks)

$$\frac{2}{\sqrt{5}+\sqrt{3}}-\frac{5}{\sqrt{7}-\sqrt{6}}$$

14. The figure below shows the graph of logy against logX

If the law connecting x and y is of the form $y = ax^b$, where a and b are constants. Find the values of a and b. (3mks)

15. Solve the equation by completing square method $2x^2 + 3x - 5 = 0$ (3mks)

16. Find the area bounded by the curve y = x(x-1)(x+2) and the x-axis. (4mks)

SECTION II (50 MARKS)

Answer any five questions from this section

17. Mr. Ouma is a civil servant on a basic salary of Kshs.18,000. On top of his salary, he gets a monthly house allowance of Kshs.14,000, medical allowance of Kshs. 3080 and a commuter allowance of Kshs. 4640. He has a life insurance policy for which he pays a premium of kshs.800 p.m and claims an insurance relief of shs 3 for every 20/= on the monthly premiums. He is entitled to a personal relief of kshs.1056 p.m

a) Using the tax table below calculate his PAYE

Income in K£ p.m	Rate %
1 - 484	10
485 - 940	15
941 – 1396	20
1397 – 1852	25
over 1852	30

b) In addition to PAYE the following deductions are made on his pay every month.

- Wcps at 2% of his basic salary
- NHIF of kshs. 400
- Loan repayment of kshs. 4000
- Co-op shares of kshs. 800
- (i) Calculate his total monthly deductions in Kshs.

(7mks)

(ii) Calculate his net monthly pay in Kshs.

(3mks)

18. The points $A^{1}B^{1}C^{1}$ are images of ABC A (1, 4), B (-2, 0), C (4, -2) respectively under a transformation N presented by the matrix $N = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix}$.

a) Write down the co-ordinates of $A^1B^1C^1$ (3mks)

b) $A^{11}B^{11}C^{11}$ are the images of $A^{1}B^{1}C^{1}$ under a transformation represented by matrix

 $M = \begin{pmatrix} 2 & -2 \\ 1 & 0 \end{pmatrix}$. Write down the co-ordinates of A¹¹B¹¹C¹¹. (3mks)

c) A transformation N followed by M can be represented by a single transformation K.
Determine the matrix K (4mks)

19. The figure below shows a solid frustum of a pyramid with a rectangular top of side 6cm by 4 cm and a rectangular base of side 10cm by 8 cm. The slant edge of the frustum is 8cm.

b)	Calculate the volume of the solid frustum.	(3mks)
----	--	--------

c) Calculate the angle between the line FC and the plane FGHE (2mks)

	d)	Calculate the angle between the planes BCHG and the base EFGH .	(2mks)
--	----	---	--------

- 20. The 2nd and 5th terms of an arithmetic progression are 8 and 17 respectively. The 2nd, 10th and 42nd terms of the A.P. form the first three terms of a geometric progression. Find
- (a) the 1^{st} term and the common difference. (3mks)

(b) the first three terms of the G.P and the 10^{th} term of the G.P. (4mks)

(c) The sum of the first 10 terms of the G.P.

(3mks)

21. Hospital records indicating the maternity patients that stayed in a hospital for a number of days are as shown in the table below.

No of days stayed	Frequency (No of patients)	
3	15	
4	32	
5	56	
6	19	
7	5	
Find the probability	that	
a) A patient stayed	exactly 5 days	

b) A patient stayed less than 6 days

c) A patient stayed at most 4 days

d) A patient stayed at least 5 days

e) A patient stayed less than 7 days but more than 4 days (2mks)

(2mks)

(2mks)

(2mks)

(2mks)

22. The position of two towns X and Y are given to the nearest degree as X (45° N, 110° Y	W) and
Y (45 ⁰ N, 70 ⁰ E). Take $\pi = 3.142$, R = 6370km.Find:	
(a) The distance between the two towns along the parallel of latitude in km.	(3mks)

(b) The distance between the towns along a parallel of latitude in nautical miles. (3mks)

(c) A plane flew from **X** to **Y** taking the shortest distance possible. It took the plane 15hrs to move from **X** and **Y**. Calculate its speed in Knots. (4mks)

23. A transporter has a van and a pick-up available for trips to the nearest town. He can allow atmost 120 litres of petrol and 4 litres of oil to be used each day. Each trip, the van uses 10 litres of petrol and 0.2 litres of oil. Each trip the pick-up uses 6 litres of petrol and 0.8 litres of oil. The profit made on each trip by the van is shs. 60 and on each trip by the pick-up is shs. 80. If he makes x trips in the van and y trips in the pick-up;

a) Write down four inequalities which must be satisfied by x and y

(4marks)

b) Represent the inequalities above graphically using a scale of 1cm to represent 2 units in both axes, and then determine the number of trips made by each vehicle to give maximum profit by use of a search line. Then give the maximum profit. (6marks)

24. A stone is thrown straight up from the edge of a roof, 80m above the ground, at a speed of 10m/s. Given that the acceleration due to gravity is $10m/s^2$

a) How far is the stone 3 seconds later?

(5mks)

b) What time does it hit the ground?

(3mks)

c) What is the velocity of the stone when it hits the ground? (2mks)