KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS 2009/2010 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE:	MATH 121
COURSE TITLE:	INTEGRAL CALCULUS
STREAM:	Y1S2
DAY:	THURSDAY
TIME:	9.00 – 11.00 A.M.
DATE:	18/03/2010

INSTRUCTIONS:

- 1. Question ONE is compulsory.
- 2. Attempt question ONE and any other TWO

PLEASE TURN OVER

Question One [30 Marks]

a) Find the most general antiderivative of the function $f(x) = (4 + 3x^2 \cos 4x)/x^2$

[3 marks]

b) Use the method of substitution to evaluate $\int_{2}^{10} \frac{3}{\sqrt{5x-1}} dx$ [4 marks]

c) Find the area of the region bounded by the graphs of the equations $y + x^2 = 6$ and y + 2x - 3 = 0 [4 marks]

d) Given that $y'' = x^2 - 6$, y'(0) = 2 and y(1) = -1 find y. [4 marks]

e) Use trapezoidal rule with n = 4 to approximate the value of $\int_0^{\pi} x^2 \sin x dx$ [4 marks]

- f) Find y' if $\sinh xy = ye^x$ [4 marks]
- g) Evaluate $\int \ln x dx$ [3 marks]
- h) The integral $\int_{2}^{\infty} \frac{1}{(x-1)^2}$ converges find its value. [4 marks]

Question Two [20 Marks]

a) If n is a rational and $n \neq -1$ show that [5 marks]

$$\int u'(x)[u(x)]^n dx = \frac{[u(x)]^{n+1}}{n+1} + c$$

- b) Use differentials to approximate the arc length of the graph of $y = x^3 + 2x$ from A(1,3) to B(1.2,4.128) [5 marks]
- c) A stone is thrown directly downward from a height of 96 feet with an initial velocity 16 ft/sec. Find
 - i) its distance above the ground after t seconds [3 marks]
 ii) when it will strike the ground [3 marks]
 iii) the velocity at which it strikes the ground. [4 marks]

Question Three [20 Marks]

a) Show that
$$\int \frac{e}{16 - e^{2x}} dx = \frac{1}{4} \tanh^{-1} \frac{e^x}{4} + c$$
 [6 marks]

b) Evaluate
$$\int \frac{x^2 - x - 21}{2x^3 - x^2 + 8x - 4} dx$$
 [8 marks]

c) To monitor the thermal pollution of a river, a biologist takes hourly temperature readings (in °F) from 9 A. M to 5 P. M. the results are shown in the table below. Use Simpson's rule to estimate the average water temperature between 9 A. M to 5 P. M. [6 marks]

Time of day	9	10	11	12	1	2	3	4	5
Temperature	75.3	77.0	83.1	84.8	86.5	86.4	81.1	78.6	75.1

Question Four [20 Marks]

- a) Use integration by parts to evaluate $\int_{1}^{2} x^{5} e^{x^{3}} dx$ [7 marks]
- b) The region bounded by the y axis and the graphs of $y = x^3$, y = 1 and y = 8 is revolved about the y axis. Find the volume of the resulting solid. [8 marks]

c) Evaluate
$$\int_{0}^{2} \int_{x^{2}}^{2x} (x^{3} + 4y) dy dx$$
 [5 marks]

Question Five [20 Marks]

- a) Evaluate $\int \cos^3 x \sin^4 x dx$ [7 marks]
- b) Use trigonometric substitution to evaluate $\int \frac{\sqrt{x^2 9}}{x} dx$ [7 marks]
- c) Find the second partial derivatives of *f* if $f(x, y) = x^3y^2 2x^2y + 3x$ [6 marks]