UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR
FOR THE DEGREE OF BACHELOR OF COMPUTER SCIENCE

COURSE CODE: MATH 121
COURSE TITLE: INTEGRAL CALCULUS
STREAM: Y1S2
DAY: THURSDAY
TIME:
9.00-11.00 A.M.

DATE:
18/03/2010

INSTRUCTIONS:

1. Question ONE is compulsory.
2. Attempt question ONE and any other TWO

Question One [30 Marks]

a) Find the most general antiderivative of the function $f(x)=\left(4+3 x^{2} \cos 4 x\right) / x^{2}$ [3 marks]
b) Use the method of substitution to evaluate $\int_{2}^{10} \frac{3}{\sqrt{5 x-1}} d x$
[4 marks]
c) Find the area of the region bounded by the graphs of the equations $y+x^{2}=6$ and $y+2 x-3=0$
[4 marks]
d) Given that $y^{\prime \prime}=x^{2}-6, y^{\prime}(0)=2$ and $y(1)=-1$ find y. [4 marks]
e) Use trapezoidal rule with $\mathrm{n}=4$ to approximate the value of $\int_{0}^{\pi} x^{2} \sin x d x$ [4 marks]
f) Find y^{\prime} if $\sinh x y=y e^{x}$
g) Evaluate $\int \ln x d x$
h) The integral $\int_{2}^{\infty} \frac{1}{(x-1)^{2}}$ converges find its value.

Question Two [20 Marks]

a) If n is a rational and $n \neq-1$ show that [5 marks]

$$
\int u^{\prime}(x)[u(x)]^{n} d x=\frac{[u(x)]^{n+1}}{n+1}+c
$$

b) Use differentials to approximate the arc length of the graph of $y=x^{3}+2 x$ from $A(1,3)$ to $B(1.2,4.128)$
c) A stone is thrown directly downward from a height of 96 feet with an initial velocity $16 \mathrm{ft} / \mathrm{sec}$. Find
i) its distance above the ground after t seconds
ii) when it will strike the ground
iii) the velocity at which it strikes the ground.

Question Three [20 Marks]

a) Show that $\int \frac{e}{16-e^{2 x}} d x=\frac{1}{4} \tanh ^{-1} \frac{e^{x}}{4}+c$ [6 marks]
b) Evaluate $\int \frac{x^{2}-x-21}{2 x^{3}-x^{2}+8 x-4} d x$
c) To monitor the thermal pollution of a river, a biologist takes hourly temperature readings (in ${ }^{\circ} \mathrm{F}$) from $9 \mathrm{~A} . \mathrm{M}$ to 5 P . M. the results are shown in the table below. Use Simpson's rule to estimate the average water temperature between 9 A. M to 5 P. M.
[6 marks]

Time of day	9	10	11	12	1	2	3	4	5
Temperature	75.3	77.0	83.1	84.8	86.5	86.4	81.1	78.6	75.1

Question Four [20 Marks]

a) Use integration by parts to evaluate $\int_{1}^{2} x^{5} e^{x^{3}} d x$ [7 marks]
b) The region bounded by the y-axis and the graphs of $y=x^{3}, y=1$ and $y=8$ is revolved about the y-axis . Find the volume of the resulting solid. [8 marks]
c) Evaluate $\int_{0}^{2} \int_{x^{2}}^{2 x}\left(x^{3}+4 y\right) d y d x$

Question Five [20 Marks]

a) Evaluate $\int \cos ^{3} x \sin ^{4} x d x$
b) Use trigonometric substitution to evaluate $\int \frac{\sqrt{x^{2}-9}}{x} d x$ [7 marks]
c) Find the second partial derivatives of f if $f(x, y)=x^{3} y^{2}-2 x^{2} y+3 x \quad$ [6 marks]

