KABARAK

UNIVERSITY EXAMINATIONS

2014 / 2015 ACADEMIC YEAR FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE MATH 322: ORDINARY DIFFERENTIAL EQUATIONS II DAY: SATURDAY DATE: 28/11/2015

TIME: 11.00 –1.00 P.M

STREAM: Y3S2

INSTRUCTIONS:

Answer Question ONE and any other two.

QUESTION ONE (30 Marks)

- a) Define the terms
 - i. regular point
 - ii. wronskian
- b) Find the equation of the tangent and normal to the circle $x^2 + y^2 = 8$ at the point $M_0(2,2)$ (6 marks)
- c) Find the general solution of $\dot{x}_1 = x_1 + x_{2,} \dot{x}_2 = x_1 + x_{2,}$ (8 marks)
- d) Determine a fundamental matrix for x' = At where $A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$ (8 marks)
- e) Express the initial value problem (IVP) $\ddot{x} + 2\dot{x} 8x = 0$; x(1) = 2, $\dot{x} = 3$ in the form $\dot{x}(t) = A(t)x(t) + f(t)$ (8 marks)

QUESTION TWO (20 Marks)

- a) Reduce the equation $x^2y'' 3xy' + 4y = 0$ to first order linear form (6marks)
- b) Given $\frac{dy}{dx} = 3x^{\frac{2}{3}}$, at x(0) = 0. Determine whether f(x, t) satisfy Lipschyt's condition near (1,1). (4marks)
- c) Find the wronskian determinant $\omega(t)$ of the functions

i.
$$e^t$$
, cos t, sin t,
ii. e^t , e^{-t} , e^{it} , e^{-it} (6marks)

(d) Show that $y' = \frac{1}{x}$ with, y(0) = 0 has no solution (4marks)

QUESTION THREE (20 marks)

(a) Given the set $\{sin \ x, cos \ x, e^{ix}\}$ find the wronskian, giving reasons determine whether the functions are dependent or independent (8marks)

(b) Determine whether $x \frac{dy}{dx} = 2y$, has a unique solution (4 marks)

(c) Find the power series solution of the equation

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 1$$
(8marks)

QUESTION FOUR (20 marks)

- a) Find the general solution near x = 0 of $3x^2y'' xy' + y = 0$ (8marks)
- b) For each of following equation determine which points are Ordinary, Regular, Neither

i.
$$x(1+x)y'' - (a+4x)y'' + 2y = 0$$
 Where is a real constant (6marks)

ii.
$$x^3y'' - xy' - y = 0$$
 (6marks)

QUESTION FIVE (20 marks)

- a) Given the set $\{x, x^2\}$ determine the WronskianW(x) hence show that the functions are independent. (6marks)
- b) Find $e^{\underline{A}t}$ for $A = \begin{bmatrix} 1 & 1 \\ 9 & 1 \end{bmatrix}$ (8marks)
- c) Determine a series solution of the equation

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$
(6marks)

d) Solve $x'' + 4x = 8t^2 - 4t + 1$ (4marks)